a julia jump based integrated energy resource planning
play

A Julia/JuMP based Integrated Energy Resource Planning Model - PowerPoint PPT Presentation

A Julia/JuMP based Integrated Energy Resource Planning Model [alessandro@psr-inc.com] March - 2019 Quick Introduction Graduated in Electrical and Control Engineering at PUC-Rio Currently doing Masters in Optimization at PUC-Rio


  1. A Julia/JuMP based Integrated Energy Resource Planning Model [alessandro@psr-inc.com] March - 2019

  2. Quick Introduction ► Graduated in Electrical and Control Engineering at PUC-Rio ► Currently doing Masters in Optimization at PUC-Rio ► Optimization Engineer and Developer at PSR since 2017

  3. Motivation ► Hourly resolution ► Unit commitment constraints ► Ramping constraints ► Exogenous calculation of system requirement reserve due to VRE intermittency and unpredictability

  4. Renewable generation - Investment Cost

  5. Renewable generation - Capacity Factor (efficiency)

  6. Global investments in renewable energy - Bloomberg

  7. German system - Challenges

  8. Consequences? ► High variability and uncertainty in the offer ► Large generation ramps ► Excess/Lack of generation ► Need for more system reserve ► Need for more thermal flexibility ► Thermal unit commitment influences expansion planning decision!!

  9. Challenges ► An expansion planning model with an hourly time step ► Unit commitment in expansion planning ► Co-optimization of expansion planning and system reserve requirement (due to renewable penetration) modeled as an exogenous variable ► Solving a MIP with all of that in a reasonable amount of time !

  10. The Model - OptGen

  11. Formulation – Objective Function 𝑦,𝑕,𝑟,𝑤 ෍ 𝑛𝑗𝑜 ෍ 𝐽 𝑗 𝑦 𝑗,𝑢 + ෍ ෍ 𝑑 𝑘 𝑕 𝑘,ℎ 𝑢 𝜗 𝕌 𝑗 𝜗 𝐽 ℎ 𝜗 𝐼 𝑘 ∈ 𝐻

  12. ҧ Formulation – Constraints 𝑢 𝒕 Hydro maximum storage 𝑤 𝑗,𝒖 ≤ 𝑤 𝑗 ෍ 𝑦 𝑗,𝜐 𝜐=1 𝑢 𝒕 𝑟 𝑗,ℎ ≤ ത 𝑟 𝑗 ෍ 𝑦 𝑗,𝜐 Hydro maximum turbining 𝜐=1 𝒕 + 𝑏 𝑗,𝑢 𝒕 − 𝑟 𝑗,𝑢 𝒕 − 𝑥 𝑗,𝑢 𝒕 + 𝒕 + 𝑥 𝒕 𝒕 𝑤 𝑗,𝑢+1 = 𝑤 𝑗,𝑢 ෍ 𝑟 𝑘,𝑢 Water balance constraint 𝑘,𝑢 𝑘 𝜗 𝑁 𝑗

  13. ҧ Formulation – Constraints 𝑡 ≤ 𝑕 𝑘,ℎ 𝒕 𝑡 𝑕 𝑘 𝑧 𝑘,ℎ ≤ 𝑕 𝑘 𝑧 𝑘,ℎ Thermal min/max generation 𝑢 𝒕 𝑧 𝑘,ℎ ≤ ෍ 𝑦 𝑘,𝜐 Commitment constrained by investment decision 𝑘=1 𝑢 𝑡 ෍ 𝒕 𝑕 𝑚,ℎ ≤ 𝐻 𝑚 𝑦 𝑚,𝜐 Wind and Solar max generation 𝜐=1

  14. Formulation – Constraints +𝑡 ≤ ത 𝑔 𝐺 𝑙 𝑙,ℎ Max capacity −𝑡 ≤ ത 𝑔 𝐺 𝑙 𝑙,ℎ −𝑡 = 1 +𝑡 − 𝑔 𝑔 ΔΘ 𝑙,ℎ Second Kirchhoff Law 𝑙,ℎ 𝑙,ℎ 𝐵 𝑙

  15. Formulation – Constraints +𝑡 − 𝑔 +𝑡 − 𝑔 −𝑡 + 𝜗 ℎ = 𝑒 ℎ −𝑡 ෍ 𝑕 𝑘,ℎ + ෍ 𝜍 𝑗 𝑟 𝑗,ℎ + ෍ 𝑕 𝑚,ℎ + ෍ 𝐸 𝑐,ℎ − 𝐷 𝑐,ℎ ෍ 𝑔 − ෍ 𝑔 𝑙,ℎ 𝑙,ℎ 𝑙,ℎ 𝑙,ℎ 𝑘 𝜗 𝐾 𝑗 𝜗 𝐼 𝑗 𝜗 𝑆 𝑐 𝜗 𝐶 𝑙 𝜗 𝐶 𝑢𝑝 𝑙 𝜗 𝐶 𝑔𝑠𝑝𝑛 Deficit Thermal Hydro Renewable Battery Net First Kirchhoff Law and Generation Generation Generation Generation Load

  16. Formulation – Constraints 𝑡 𝑡 ≤ 𝑆 𝑉𝑄 𝑕 𝑘,ℎ − 𝑕 𝑘,ℎ−1 Ramp 𝑡 𝑡 ≤ 𝑆 𝐸𝑂 𝑕 𝑘,ℎ−1 − 𝑕 𝑘,ℎ 𝑡 ≥ 𝑧 𝑘,ℎ 𝑡 − 𝑧 𝑘,ℎ−1 𝑡 𝑡𝑢 𝑘,ℎ Start-up

  17. Formulation – Constraints ෍ 𝑦 𝑗,𝑢 ≤ 1 𝑢 𝜗 𝕌 ෍ 𝑦 𝑘,𝑢 ≤ 1 Investment Decision Constraint 𝑢 𝜗 𝕌 ෍ 𝑦 𝑚,𝑢 ≤ 1 𝑢 𝜗 𝕌

  18. Formulation – Constraints 𝑡 + ෍ 𝑡 + ෍ 𝑡 𝑉𝑄 Reserve Balance ෍ 𝑠 𝑠 𝑠 ≥ 𝑆 𝑏,ℎ 𝑐,ℎ 𝑘,ℎ 𝑗,ℎ 𝑘∈𝑏 𝑗∈𝑏 𝑐∈𝑏 𝑡 ≤ ഥ 𝑡 𝑡 Thermal reserve 𝑕 𝑘,ℎ + 𝑠 𝐻 𝑘 𝑧 𝑘,ℎ 𝑘,ℎ 𝑡 + 𝑠 𝑡 ≤ 𝐼 𝑗 𝑦 𝑗,𝑢 𝑕 𝑗,ℎ Hydro reserve 𝑗,ℎ 𝑡 𝑡 𝑕 𝑐,ℎ + 𝑠 ≤ 𝐶 𝑐 𝑦 𝑐,𝑢 Battery reserve 𝑐,ℎ

  19. Ƹ Formulation – Constraints 𝑡 Forecast Generation 𝜉 𝑚,ℎ = 𝐹[𝑕 𝑚,𝑛,ℎ ] 𝑡 − Ƹ Forecast error 𝑡 𝜀 𝑏,ℎ = ෍ 𝑕 𝑚,ℎ 𝜉 𝑚,ℎ 𝑦 𝑚,𝑢 𝑏 𝑚∈𝐵 𝑚 Hourly Variation in 𝑡 𝑡 𝑡 𝛦 𝑏,ℎ ≥ 𝜀 𝑏,ℎ −𝜀 𝑏,ℎ−1 Forecast error 𝑉𝑄 ≥ (1 − 𝜇)𝐹[𝛦 𝑏,ℎ 𝑡 ] + 𝜇𝐷𝑊𝑏𝑆 𝛽 𝛦 𝑏,ℎ 𝑡 Dynamic Probabilistic 𝑆 𝑏,ℎ Reserve Criteria

  20. Assumptions and Approximations – Rolling Horizon

  21. Assumptions and Approximations – Daily Aggregation

  22. Basic Structure

  23. International Studies – Chilean Energy System http://generadoras.cl/prensa/mayor-aporte-solar-y-eolico-reducira-al-25-la-generacion-termica-al-2030-en-chile http://generadoras.cl/prensa/generadoras-participo-en-seminario-internacional-de-energia-renovable-variable-erv

  24. International Studies – Brazilian Energy System http://www.epe.gov.br/en/press-room/news/-cem-days-integration-of- https://www.giz.de/en/worldwide/12565.html renewables-in-the-electric-sector-paths-and-challenges-to-energy-planning

  25. Chilean System Study Example ► 13 years horizon ► 54 scenarios ► 300 thermal plants (100 projects) ► 650 wind and solar plants (500 projects) ► 100 hydro plants ► 12 transmission lines / 6 buses (simplified network) ► ~ 5.6 MM constraints per year ► ~ 7.8 MM variables ( 3 MM integer ) per year

  26. Solving the Model ► FICO Xpress 8.5 solver ► c5.9xlarge amazon instance - 3.0 GHz Intel Xeon Platinum processors - 36 vCPU - 72 GB RAM ► Xpress control parameters were tuned by Xpress lead developer (Michael Perregaard) ► Solve time: ~ 240 minutes per year

  27. Results - Incremental Expansion

  28. Results - Wind and Solar complementarity

  29. Results - Marginal Costs

  30. Brazilian System Study Example ► 1 year horizon ► 10 scenarios ► 600 thermal plants (400 projects) ► 100 wind and solar plants (30 projects) ► 200 hydro plants ► 10 battery projects ► 50 transmission lines / 30 buses (simplified network) ► ~5 MM constraints per year ► ~4 MM variables (1 MM integer) per year

  31. Solving the Model ► FICO Xpress 8.5 solver ► c5.9xlarge amazon instance - 3.0 GHz Intel Xeon Platinum processors - 36 vCPU - 72 GB RAM ► Xpress control parameters were tuned by Xpress lead developer (Michael Perregaard) ► Solve time: ~ 70 minutes

  32. Incremental Expansion

  33. Installed Capacity 2017 ~2036

  34. Thanks! alessandro@psr-inc.com www.psr-inc.com psr@psr-inc.com +55 21 3906-2100 +55 21 3906-2121

Recommend


More recommend