a hybrid material point method for frictional contact
play

A Hybrid Material Point Method for Frictional Contact with Diverse - PowerPoint PPT Presentation

A Hybrid Material Point Method for Frictional Contact with Diverse Materials Xuchen Han , Theodore Gast, Qi Guo, Stephanie Wang, Chenfanfu Jiang and Joseph Teran MPM is hybrid Lagrangian/Eulerian Particles: constitutive modeling - the


  1. A Hybrid Material Point Method for Frictional Contact with Diverse Materials Xuchen Han , Theodore Gast, Qi Guo, Stephanie Wang, Chenfanfu Jiang and Joseph Teran

  2. MPM is hybrid Lagrangian/Eulerian • Particles: constitutive modeling - the physics • Transfer: quadrature rule, collision detect, topology change • Grid handles: the Galerkin DOFs, BC, discretization

  3. Stomakhin et al. 2013 Ram et al. 2015 Yue et al. 2015 Gast et al. 2015 Klar et al. 2016 Daviet et al. 2016 Stomakhin et al. 2015 Gao et al. 2018 Pradhana et al. 2018 Wolper et al. 2019

  4. MPM for meshed objects Elastic potential Element wise energy density Deformation gradient Grid node force Grid node position Particle position

  5. Jiang et al. 2017 Jiang et al. 2017 Guo et al. 2018 Guo et al. 2018

  6. Drawbacks of MPM Δ" Grid = Δ" Mesh Δ" Grid = 0.1Δ" Mesh Δ" Grid = 0.01Δ" Mesh Numerical Friction Grid Dependency

  7. MPM Collision Prevention • Type I: Collision modes penalized via potential energy • Type II: Smooth interpolation

  8. Type I Collision Resolution

  9. Traction in a continuum

  10. Traction in a continuum + Cauchy stress -

  11. Friction and plasticity Traction Normal force Frictional force Coulomb friction

  12. Friction and plasticity Yield surface

  13. MPM Our method

  14. Our method MPM

  15. MPM Collision Prevention • Type I: Collision modes penalized via potential energy • Move the DOFs to the Lagrangian Mesh

  16. MPM Collision Prevention • Type I: Collision modes penalized via potential energy • Type II: Smooth interpolation

  17. Type II Collision Resolution

  18. MPM Collision Prevention • Type I: Collision modes penalized via potential energy Modify • Type II: Smooth interpolation

  19. Hybrid MPM DOF ⋆ − / 1 Quadrature / 0 = / 1 45 / 0 ⋅ / 1 < 0: / 1 ⋆ / 1 / ? = / 0 − / 0 ⋅ : 1 : 1 Δ/ 1 = 9 1 : 1 + ;4= ∥ / ? ∥, −A 9 1 / ? : 1 / 0 ; 1 ; 1 ∥ / ? ∥ ˜ CDE − / B ∗ = ∑ Δ/ B = / B H B1 Δ/ 1 1 H B1 ; 1 ˜ H B1 = ∑ 0 H B0 ; 0

  20. Hybrid MPM • 1) Lagrangian Update • 2) Transfer to grid • 3) Transfer to collision particles • 4) Apply impulses • 5) Update positions

  21. Type II Collision Resolution

  22. Modify Type II Collision

  23. Modify Type II Collision Δ" Grid = Δ" Mesh Δ" Grid = 0.1Δ" Mesh Δ" Grid = 0.01Δ" Mesh MPM Our Method

  24. Coupling with granular Material MPM (186s/frame) Our Method (66s/frame)

  25. 220s/frame 73s/frame

  26. Strands Surface Curve

  27. Strands Jiang et al. (2017) Our Method

  28. Strands: Method (Continuous) • Decompose motion into J = J K ∘ J M • O = O K O M and O K = O K,P O K,Q • Strand energy: Ψ = Ψ M (O K,P ) + Ψ UPV (O M ) • Ψ UPV (O M ) consists of stretching, twisting, and bending potentials, see [Bergou et al. 2010] • Ψ M (O K,P ) is the St.Venant-Kirchhoff Hencky energy, chosen for the ease of plasticity return mapping

  29. Strands: Method (Discrete) • Strand energy: Ψ = Ψ M (O K,P ) + Ψ UPV (O M ) UPV C + ΔW X B ∗ = / B / B • Ψ UPV (O M ) Lagrangian ; B • Ψ M (O K,P ) MPM Type to enter a caption. • Clean up with geometric collision algorithm Similar to Bridson et al. [2002]

  30. Strands Comparison McAdams et al. (2009) Our Method More than 500 thousand missed collisions 120 missed collisions 156 seconds/frame 55 seconds/frame

  31. Results

  32. Results

  33. Results

  34. Results

  35. Results

  36. Results

Recommend


More recommend