a hybrid lattice reduction and quantum search attack on
play

A Hybrid Lattice Reduction and Quantum Search Attack on LWE F. - PowerPoint PPT Presentation

A Hybrid Lattice Reduction and Quantum Search Attack on LWE F. Gpfert, C. van Vredendaal, Thomas Wunderer 29.06.2017 | 1 Motivation Primal BKW Embedding LWE Hybrid Dual Embedding Make it quantum! Faster More versatile


  1. A Hybrid Lattice Reduction and Quantum Search Attack on LWE F. GΓΆpfert, C. van Vredendaal, Thomas Wunderer 29.06.2017 | 1

  2. Motivation Primal BKW Embedding LWE Hybrid … Dual Embedding Make it quantum! Faster More versatile 29.06.2017 | 2

  3. Background and Notation 29.06.2017 | 3

  4. Lattices π‘œ -dimensional lattice Ξ› : a discrete additive subgroup of ℝ π‘œ Basis of a lattice Ξ› : lin. ind. β€² 𝒄 1 π‘ͺ = 𝒄 1 , … , 𝒄 π‘œ such that β€² 𝒄 2 Ξ› = ℀𝒄 1 + … + ℀𝒄 π‘œ . 𝒄 1 𝒄 2 (good) basis π‘ͺ Basis (bad) basis π‘ͺ β€² reduction 29.06.2017 | 4

  5. Shortest Vector Problem (SVP) 0 Find a shortest non- zero lattice vector 29.06.2017 | 5

  6. Closest Vector Problem (CVP) Bounded Distance Decoding (BDD) 𝒇 𝒖 Given a target vector 𝒖 Find (short) difference vector 𝒇 29.06.2017 | 6

  7. Learning with Errors (LWE) . 𝑩 b e = + mod q s short short π‘›Γ—π‘œ , 𝒄 ∈ β„€ π‘Ÿ 𝑛 π‘œ Given: 𝑩 ∈ β„€ π‘Ÿ Find: 𝒕 ∈ β„€ π‘Ÿ 29.06.2017 | 7

  8. The (Quantum) Hybrid Attack on LWE 29.06.2017 | 8

  9. Our approach We solve the LWE instance 𝒄 = 𝑩𝒕 + 𝒇 𝑛𝑝𝑒 π‘Ÿ as follows: Transform LWE into SVP in some lattice Ξ› 1. Generate a basis π‘ͺ β€² of Ξ› of the form 2. π‘ͺ β€² = π‘ͺ 𝑫 𝟏 𝑱 𝑠 Solve SVP in Ξ› with our Quantum Hybrid Attack 3. 29.06.2017 | 9

  10. Transforming LWE into SVP 𝒄 = 𝑩𝒕 + 𝒇 𝑛𝑝𝑒 π‘Ÿ 𝒕 ∈ Ξ› = π’š ∈ β„€ π‘œ+𝑛+1 ∢ 𝑩 𝑱 𝑛 βˆ’ 𝒄 π’š = 𝟏 𝑛𝑝𝑒 π‘Ÿ 𝒇 π’˜ = 1 short 29.06.2017 | 10

  11. The Quantum Hybrid Attack (Idea) Setup : Find a shortest non-zero vector π’˜ ∈ Ξ› π‘ͺ β€² βŠ‚ β„€ 𝑒 , where π‘ͺ β€² = π‘ͺ 𝑫 𝟏 𝑱 𝑠 𝑀 1 𝑀 1 Find π’˜ 1 ∈ β„€ π‘’βˆ’π‘  with lattice-based techniques: π‘Ÿπ½ π‘œ 𝐼 𝑏 β€’ Basis reduction as precomputation 𝑀 = ∈ Ξ› ≔ Ξ› β€’ BDD-algorithms (Nearest Plane [Babai86]) 0 π‘œ 𝐽 π‘œ 𝑔 𝑀 2 Quantum-search for π’˜ 2 ∈ β„€ 𝑠 (β€œGrover - like”) 29.06.2017 | 11

  12. Quantum vs. Classical Hybrid Attack Quantum Classical Quantum search for π’˜ 2 Meet-in-the-middle search for π’˜ 2 + √ -speed-up over brute-force + √ -speed-up over brute-force + More versitile - Requires highly structured keys + Low memory consumption - Huge memory consumption + No collision-finding probability - Low collision-finding probability (might be β‰ˆ 2 βˆ’90 ) 29.06.2017 | 12

  13. The Attack 29.06.2017 | 13

  14. Find π’˜ 𝟐 approach if π’˜ πŸ‘ is known π’˜ 𝟐 π’š π‘ͺπ’š + π‘«π’˜ πŸ‘ = π‘ͺ 𝑫 π’˜ = = 𝟏 𝑱 𝑠 π’˜ πŸ‘ π’˜ πŸ‘ π’˜ πŸ‘ Lattice 𝚳 = 𝚳 π‘ͺ π’˜ 𝟐 π’Ž = βˆ’π‘ͺπ’š 𝒖 = π‘«π’˜ πŸ‘ 0 Solve BDD problem: Given 𝒖 , find π’˜ 𝟐 29.06.2017 | 14

  15. Solving BDD: Babaiβ€˜s Nearest Plane Requires sufficiently good basis 𝒖 β€² 𝒖 𝑂𝑄 π‘ͺ 𝒖 𝑂𝑄 π‘ͺ 𝒖′ 𝒬 ( π‘ͺ ) 29.06.2017 | 15

  16. The Algorithm (Simplified Idea) Task : find a shortest non-zero vector in a lattice Ξ› Input : a search space 𝑇 βŠ‚ β„€ 𝑠 , a basis π‘ͺ β€² = π‘ͺ 𝑫 𝟏 𝑱 𝑠 Loop : β€² ∈ 𝑇 (black box for now) β€’ β€œQuantum - guess” π’˜ 2 β€’ Check if guess is correct: β€² = 𝑂𝑄 π‘ͺ π‘«π’˜ 2 β€² β€’ Calculate π’˜ 1 β€² π’˜ 1 β€’ If π’˜ = is sufficiently short β€² π’˜ 2 β€’ Return π’˜ 29.06.2017 | 16

  17. Quantum Search (simplified) β€’ Let 𝑇 = 𝑑 1 , … , 𝑑 𝑙 be a finite search space and 𝐸 = π‘ž 1 , … , π‘ž 𝑙 be a probability distribution on 𝑇 . Let 𝑑 ∈ 𝑇 be a secret sampled from 𝐸 . Task: find it! β€’ Choose a probability distribution 𝐡 = 𝑏 1 , … , 𝑏 𝑙 on 𝑇 . β€’ β€’ There exists a quantum algorithm (generalization of Grover’s search algorithm) that finds 𝑑 in roughly 𝑀 𝐡 = 𝑀 𝑏 1 , … , 𝑏 𝑙 = π‘ž 𝑗 𝑏 𝑗 loops (sampling from 𝐡 and testing). 29.06.2017 | 17

  18. How to choose the distribution A Minimize the function 𝑀 𝑏 1 , … , 𝑏 𝑙 = π‘ž 𝑗 β€’ 𝑏 𝑗 over all 𝑏 1 , … , 𝑏 𝑙 ∈ 0,1 with 𝑏 1 + β‹― + 𝑏 𝑙 = 1 . β€’ Optimization with constraints in 𝑙 variables ( οƒ  Lagrange) 2/3 π‘ž 𝑗 Optimal distribution a 1 , … , 𝑏 𝑙 with 𝑏 𝑗 = β€’ 2/3 π‘ž 𝑗 β€’ Minimal number of loops : 3/2 2/3 𝑀 π‘›π‘—π‘œ = π‘ž 𝑗 29.06.2017 | 18

  19. Example (New Hope) Take 𝑇 = βˆ’16, … , 16 200 and 𝐸 to be the distribution on 𝑇 given in the β€œNew Hope” key exchange scheme [ADPS16] β€’ Classical brute-force search: 𝑀 π‘‘π‘šπ‘π‘‘π‘‘π‘—π‘‘π‘π‘š β‰ˆ 33 200 β‰ˆ 2 1009 β€’ Grover’s quantum search: 33 200 β‰ˆ 2 504 𝑀 𝐻𝑠𝑝𝑀𝑓𝑠 β‰ˆ β€’ Our approach: 𝑀 𝑝𝑣𝑠 β‰ˆ 2 1.85β‹…200 β‰ˆ 2 370 29.06.2017 | 19

  20. Results 29.06.2017 | 20

  21. Runtime Analysis Main result: Let all notations be as before and 𝐸 = π‘ž 1 , … , π‘ž 𝑙 be the distribution from which 𝑀 2 is sampled. Success probability: max βˆ’π‘  𝑗 ,βˆ’1 π‘›βˆ’π‘  2 1 βˆ’ 𝑧 2 π‘›βˆ’π‘ βˆ’3 π‘ž 𝑑𝑣𝑑𝑑 β‰ˆ 1 βˆ’ 𝑒𝑧 2 𝐢 𝑛 βˆ’ 𝑠 βˆ’ 1 , 1 𝑗=1 2 2 βˆ’1 𝑆 𝑗 where 𝐢 β‹…,β‹… denotes the Euler beta function, 𝑠 𝑗 = 2β€–π’˜ 1 β€– and 𝑆 𝑗 is the length of the 𝑗 -th Gram-Schmidt vector in π‘ͺ . 2/3 3/2 π‘›βˆ’π‘  2 π‘ž 𝑗 Number of operations if successful : T β„Žπ‘§π‘ β‰ˆ 2 1.06 29.06.2017 | 21

  22. Runtime Analysis Remarks: T β„Žπ‘§π‘ depends on the guessing-dimension 𝑠 and the β€ž quality β€œ πœ€ β€’ (Hermite factor) of the basis π‘ͺ Use precomputation (basis reduction) to change πœ€ β€’ β€’ Balance precomputation and actual attack costs: T π‘’π‘π‘’π‘π‘š 𝑠, πœ€ = T 𝑠𝑓𝑒 𝑠, πœ€ + T β„Žπ‘§π‘ 𝑠, πœ€ π‘ž 𝑑𝑣𝑑𝑑 𝑠, πœ€ Non-trivial optimization process in 𝑠 and πœ€ β€’ β€’ More details: see paper 29.06.2017 | 22

  23. Results β€’ Runtime depends on the cost of basis reduction (BKZ) How to model the SVP cost inside BKZ with block size 𝛾 ? β€’ β€’ Two (very) different ways in the literature: π‘‡π‘Šπ‘„ = 2 0.27𝛾 ln 𝛾 βˆ’1.019𝛾+16.1 T β€’ Enumeration: π‘‡π‘Šπ‘„ = 2 0.265𝛾+16.4 T β€’ Sieving: T 𝑠𝑓𝑒 β‰ˆ 𝑒𝑗𝑛 βˆ— #𝑒𝑝𝑣𝑠𝑑 βˆ— T β€’ π‘‡π‘Šπ‘„ β€’ οƒ  We provide two different runtime estimates β€’ Compare our results with the LWE estimator (not claimed security levels!) 29.06.2017 | 23

  24. Results: New Hope and Frodo Attack New Hope Frodo-592 Frodo-752 Frodo-864 Dual 1346 446 485 618 Decoding 833 - - - Qu. Hybrid 725 254 310 377 Table 1: BKZ with enumeration Attack New Hope Frodo-592 Frodo-752 Frodo-864 Dual 389 173 184 219 Decoding 380 - - - Qu. Hybrid 384 171 189 221 Table 2: BKZ with sieving 29.06.2017 | 24

  25. Results: Lindner-Peikert Figure 1: BKZ with enumeration 29.06.2017 | 25

  26. Results: Lindner-Peikert Figure 1: BKZ with enumeration 29.06.2017 | 26

  27. Conclusion β€’ New improved Quantum Hybrid Attack β€’ Detailed runtime analysis of the Quantum Hybrid β€’ New possibilities: apply Quantum Hybrid to non-uniform search spaces (e.g., LWE with Gaussian distribution) β€’ Outperforms other attacks in several instances Thank you! Questions? 29.06.2017 | 27

  28. Literature [HG07] N. Howgrave-Graham. A Hybrid Lattice-Reduction and Meet-in-the-Middle Attack against NTRU . [BGPW16] J. A. Buchmann, F. GΓΆpfert, R. Player, and T. Wunderer. On the Hardness of LWE with Binary Error. [Wun16] T. Wunderer. Revisiting the Hybrid Attack: Improved Analysis and Refined Security Estimates [GvVW16] F. GΓΆpfert, C. van Vredendaal, T. Wunderer. The Quantum Hybrid Attack. [Babai86] L. Babai. On LovΓ‘sz ’ Lattice Reduction and the Nearest Lattice Point Problem. [Schank15] J. Schanck. Practical Lattice Cryptosystems: NTRUencrypt and NTRUmls. [Grover96] L. K. Grover. A Fast Quantum Mechanical Algorithm for Database Search. [BHMT02] G. Brassard, P. HΓΈyer, M. Mosca, A. Tapp. Quantum Amplitude Amplification and Estimation. [ADPS16] E. Alkim, L. Ducas, T. PΓΆppelmann, P. Schwabe. Post-quantum Key Exchange - A New Hope. 29.06.2017 | 28

Recommend


More recommend