A Holographic Realization of Ferromagnets Masafumi Ishihara ( AIMR, Tohoku University) Collaborators: Koji Sato ( AIMR, Tohoku University) Naoto Yokoi ( IMR, Tohoku University) Eiji Saitoh ( AIMR, IMR, Tohoku University ERATO, JST ASRC, JAEA) arXiv:1508.01626 [hep-th]
Holographic duality New Duality from string theory: Holographic Duality (Holography) J.M. Maldacena 1998,
Holographic Ferromagnet http://ja.wikipedia.org/wiki/%E7%A3%81%E7%9F%B3 http://en.wikipedia.org/wiki/Black_hole We construct the dual gravity model of ferromagnet by holography U(1) Rotational SU(2) sym.
Contents Introduction โ Ferromagnet (condensed matter theory) Ferromagnet (Holographic duality) Numerical Result Summary
Ginzburg-Landau Theory Ferromagnet : SU(2) is broken to U(1) GL theory : useful near critical temperature ๐ผ โผ ๐ผ ๐ F: Free energy M : Magnetization H : Magnetic field ๐ฎ = ๐ฎ ๐ + ๐ ๐ ๐ ๐ผ โ ๐ผ ๐ ๐ต ๐ + ๐ ๐ ๐๐ต ๐ โ ๐ต๐ฐ For H=0 , ๐๐ฎ ๐๐ต = ๐ ๐ผ โ ๐ผ ๐ ๐ต + ๐๐ต ๐ = ๐ ๐ ๐ต โ ๐ผ โ ๐ผ ๐ for ๐ผ < ๐ผ ๐ ๐ โ ๐ต = ๐ for ๐ผ > ๐ผ ๐ ๐๐ต = ๐ ๐ผ โ ๐ผ ๐ ๐ต + ๐๐ต ๐ โ ๐ฐ = ๐ ๐๐ฎ Fo r ๐ฐ โ ๐, ๐ โ ๐ต โ ๐ฐ at ๐ผ โผ ๐ผ ๐ , ๐
Curie-Weiss Law ๐ โก ๐๐ต Susceptibility ๐๐ฐ ๐๐ฎ ๐๐ต = ๐ ๐ผ โ ๐ผ ๐ ๐ต + ๐๐ต ๐ โ ๐ฐ = ๐ ๐ ๐ผ โ ๐ผ ๐ ๐ + ๐๐๐ต ๐ ๐ โ ๐ = ๐ โ Curie-Weiss Law ๐๐ซ (๐ผ > ๐ผ ๐ ) ๐ผ โ ๐ผ ๐ ๐ ๐ฐ=๐ = ๐ซ (๐ผ < ๐ผ ๐ ) ๐ผ ๐ โ ๐ผ C : constant
Low Temperature and magnons At low temperatures, magnetization is mostly aligned. elementary excitations: magnons (quantized spin wave) Reduction of magnetization is proportional to magnon density n : ๐ต = ๐ต ๐ โ ๐ฌ๐ต ๐ฌ๐ต โ ๐ Dispersion of magnons : ๐ ๐ = ๐ฌ๐ ๐ + ๐ท๐ฐ ๐ ๐ ๐ โ๐ท๐ฐ/๐ ๐ช ๐ผ Magnon density : ๐ = ๐ผ ๐ Bloch ๐ผ ๐/๐ law : ๐ฌ๐ต ๐ฐโ๐ โ ๐ผ ๐
Prescription of Holography Find the 1-dimensional higher gravity action with the same symmetry (breaking) as the Ferromagnetic system. Solve the equation of motion from the gravitational action. Extract the physical quantities from the solution by using โholographic dictionaryโ.
Gravity action dual to Ferromagnet (3+1)D Ferromagnetic system : SU(2) symmetry which is spontaneously broken to U(1) (4+1)D Gravitational system with SU(2) fields which is spontaneously broken to U(1) ๐๐ ๐ ๐บ โ ๐๐ณ โ ๐ ๐ ๐ ๐ฎ ๐๐ต๐ถ โ ๐ ๐๐ ๐ ๐ฏ ๐ต๐ถ ๐ฏ ๐ต๐ถ โ ๐ ๐ฌ ๐ต ๐ ๐ ๐ + ๐พ ๐ ๐ ๐ป ๐ = โซ ๐ ๐ ๐ โ๐ ๐๐ ๐ ๐ฎ ๐ต๐ถ ๐ โ ๐ ๐ถ ๐ฉ ๐ต ๐ + ๐ ๐๐๐ ๐ฉ ๐ต ๐ ๐ฉ ๐ถ ๐ ๐ ๐ = ๐, ๐, ๐ ๐ฎ ๐ต๐ถ = ๐ ๐ต ๐ฉ ๐ถ SU(2) gauge field ๐ฒ ๐ = (๐, ๐, ๐, ๐, ๐) ๐ฏ ๐ต๐ถ = ๐ ๐ต ๐ช ๐ถ โ ๐ ๐ถ ๐ช ๐ต U(1) gauge field ๐ ๐ = ๐, ๐, ๐(๐) : triplet scalar ๐ ๐ ๐ ๐ โ ๐ ๐ ๐พ = ๐ : potential for scalar ๐
Dictionary GKP-Witten relation = ๐ โ๐ป ๐๐๐๐๐๐๐ [๐ฒ] ๐ ๐น๐ฎ๐ผ ๐ฒ J : source S.S. Gubser, I.R. Klebanov and A.M. Polyakov 1998 , E.Witten 1998 (3+1)D Ferromagnet (4+1)D gravity Magnetization M Scalar field ๐ External Magnetic Field H Holography Temperature ๐ผ Black Hole temperature ๐ผ Charge current ๐ฒ ๐ U(1) gauge field ๐ช ๐ต ๐ ๐ ๐ฒ ๐ Spin Current SU(2) gauge field ๐ฉ ๐ต http://ja.wikipedia.org/wiki/%E7%A3%81%E7%9F%B3 http://en.wikipedia.org/wiki/Black_hole
Black Hole solution ๐๐ ๐ ๐บ โ ๐๐ณ โ ๐ ๐ ๐๐ ๐ ๐ฏ ๐ต๐ถ ๐ฏ ๐ต๐ถ โ ๐ ๐ฎ ๐๐ต๐ถ โ ๐ ๐ ๐ฌ ๐ต ๐ ๐ ๐ + ๐พ ๐ ๐ ๐ป ๐ = โซ ๐ ๐ ๐ โ๐ ๐๐ ๐ ๐ฎ ๐ต๐ถ Solution of EOM for ๐ = ๐ (4+1)-Dim AdS charged Black Hole metric ๐ ๐ ๐ ๐ ๐๐ ๐ ๐ ๐ โ๐ ๐ ๐๐ ๐ + ๐๐ ๐ + ๐๐ ๐ + ๐๐ ๐ + ๐ ๐๐ ๐ฉ๐๐ปโ๐ ๐ช๐ฐ = ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ = ๐ + ๐น ๐ ๐ ๐ฐ ๐ ๐ฐ ๐ ๐ฐ ๐ โ ๐ ๐ฐ ๐ = ๐ ๐ โ ๐ + ๐น ๐ ๐ฉ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐น ๐ = ๐๐ ๐ ๐ ๐ ๐ ๐ช ๐ = ๐ ๐ ๐ฐ ๐ โ ๐ ๐ฐ ๐ ๐ + ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐โ๐น ๐ ๐ณ = โ ๐ Black Hole Temperature : ๐ผ = ๐ ๐ฐ = ๐ = ๐ ๐ ๐ ๐๐ C. P. Herzog and S. S. Pufu (2009) N. Iqbal, H. Liu, M. Mezei, and Q. Si 2010
Equation of motion for ๐ Acti tion for or ๐ ๐ โ ๐พ ๐ ๐ ๐ ๐ = โซ ๐๐ โ๐ ๐ฉ๐๐ปโ๐ ๐ช๐ฐ โ ๐ ๐ ๐๐ ๐ Equation of motion ๐๐ ๐ (๐) โ ๐ ๐ ๐(๐) โ ๐๐(๐)๐ + ๐ โฒ ๐ ๐ ๐ ๐ โฒ ๐ โ ๐ ๐ ๐ ๐ ๐"(๐) = ๐ ๐ ๐ = ๐ + ๐น ๐ ๐ ๐ โ ๐+๐น ๐ ๐ผ = ๐โ๐น ๐ ๐ ๐ ๐๐ Asymptotic solution: ๐ฐ ๐ต ๐. ๐ โค ๐ ๐ โค ๐ ๐ โ ๐ ๐ ๐ ๐ = ๐ ๐โ๐ฌ + ๐ ๐+๐ฌ + โฏ ๐ โก H : External magnetic field M : Magnetization from GKP-Witten relations ( ๐ ๐น๐ฎ๐ผ [๐ฒ] = ๐ โ๐ป ๐๐๐๐๐๐๐ [๐ฒ] )
Numerical method We solve the EOM numerically. ( ๐ 2 = 3.89, ๐ = 1 ) ๐๐ ๐ ๐ โ ๐ ๐ ๐(๐) โ ๐๐(๐)๐ + ๐ โฒ ๐ ๐ ๐ ๐ โฒ ๐ โ ๐ ๐ ๐ ๐ ๐"(๐) = ๐ ๐ ๐ = ๐ + ๐น ๐ ๐+๐น ๐ ๐โ๐น ๐ ๐ ๐ โ ๐ผ = ๐ ๐ ๐๐ We will focus on Spontaneous magnetization ( M when ๐ฐ = ๐ ) ๐ฐ ๐ต ๐ ๐ = ๐ ๐โ๐ฌ + ๐ ๐+๐ฌ + โฏ ๐ โ ๐ ๐ ๐ โก ๐ ๐ ๐โ๐ฌ ๐ ๐ ๐ ๐๐ +๐ ๐ฐ = ๐ ๐โ๐ฌ ๐ ๐ ๐โโ ๐ต = ๐โโ โ๐๐ฌ ๐๐
Result: ๐ผ~๐ผ ๐ Spontanious Magnetization ๐ต ๐ ๐ โ ๐ผ ๐ ๐ต โ ๐ผ ๐ โ : result by holographic duality Magnetic susceptibility ๐ โก ๐๐ต ๐๐ฐ ๐ฐ=๐ we can get Curie โ Weiss law ๐ซ + ๐ผ > ๐ผ ๐ ๐ผ/๐ผ ๐ โ๐ ๐ = ๐ โ (๐ผ < ๐ผ ๐ ) ๐โ๐ผ/๐ผ ๐ ๐ + /๐ โ โผ ๐. ๐๐
Result : ๐ โผ ๐ผ ๐ H : External magnetic field M : Magnetization ๐ ๐ต โ ๐ฐ ๐ F : Free energy The scalar part of the on-shell action ๐ฎ โ ๐ผ โ ๐ผ ๐ ๐ Results near ๐ผ ๐ are consistent with Ginzburg-Landau Theory
Result: low temperature ( ๐ผ โผ ๐ ) Magnetization ๐ต ๐ ๐ law we can reproduce the Bloch ๐ผ ๐ ๐ผ ๐ ๐ต โ ๐ โ ๐ซ ๐ผ ๐ At low T , Results are consistent with magnons.
Result: low temperature ( ๐ผ โผ ๐ ) Magnetic susceptibility: ๐ ๐ ๐ผ ๐ ๐ โผ ๐ ๐ + ๐ฌ ๐ผ ๐ First term ๐ ๐ : Pauli paramagnetic susceptibility from conduction electrons Second term: susceptibility from magnons F : Free energy ๐ ๐ผ ๐ผ ๐ฎ โผ โ๐ฎ ๐ + ๐ญ โ ๐น ๐ผ ๐ ๐ผ ๐ ๐น : linear in T of the specific heat from conduction eletctrons
Summary We have constructed a holographic dual model of ferromagnet and found the holographic dictionary between ferromagnet and gravity. Using the dictionary, we analyzed the temperature dependence of Magnetization M , Susceptibility ๐ , Free energy ๐ฎ Our results are consistent with T โผ 0 : Magnon + Conduction electron T โผ ๐ ๐ : GL theory Black Hole captures the ferromagnetic system both near ๐ผ ๐ and low temperatures Outlook 1 Magnon dynamics 2 Correlation functions http://en.wikipedia.org/wiki/Black_hole
Recommend
More recommend