a geometrical bound for the sunflower property
play

A geometrical bound for the sunflower property Leo Storme Ghent - PowerPoint PPT Presentation

t -Intersecting constant dimension random network codes A geometrical bound for the sunflower property Leo Storme Ghent University Dept. of Mathematics Krijgslaan 281 9000 Ghent Belgium (joint work with R. Barrolletta, M. De Boeck, E.


  1. t -Intersecting constant dimension random network codes A geometrical bound for the sunflower property Leo Storme Ghent University Dept. of Mathematics Krijgslaan 281 9000 Ghent Belgium (joint work with R. Barrolletta, M. De Boeck, E. Suárez-Canedo, P . Vandendriessche) DARNEC 2015, November 4, 2015 Leo Storme Random network coding

  2. t -Intersecting constant dimension random network codes O UTLINE 1 t -I NTERSECTING CONSTANT DIMENSION RANDOM NETWORK CODES A dimension result Leo Storme Random network coding

  3. t -Intersecting constant dimension random network codes A dimension result O UTLINE 1 t -I NTERSECTING CONSTANT DIMENSION RANDOM NETWORK CODES A dimension result Leo Storme Random network coding

  4. t -Intersecting constant dimension random network codes A dimension result t -I NTERSECTING CONSTANT DIMENSION RANDOM NETWORK CODES t -Intersecting constant dimension random network code: Codewords are k -dimensional vector spaces. Distinct codewords intersect in t -dimensional vector spaces. Classical example: Sunflower: all codewords pass through same t -dimensional vector space. Leo Storme Random network coding

  5. t -Intersecting constant dimension random network codes A dimension result S UNFLOWER Leo Storme Random network coding

  6. t -Intersecting constant dimension random network codes A dimension result L ARGE t - INTERSECTING CONSTANT DIMENSION RANDOM NETWORK CODES T HEOREM Large t-intersecting constant dimension random network codes are sunflowers. Proof: Via result from classical coding theory. Leo Storme Random network coding

  7. t -Intersecting constant dimension random network codes A dimension result t -I NTERSECTING BINARY CONSTANT WEIGHT CODES t -intersecting binary constant weight codes Binary constant weight code: codewords have fixed weight w . t -intersecting binary constant weight code: | supp ( c 1 ∩ c 2 ) | = t . Sunflower: all codewords have ones in t fixed positions. Leo Storme Random network coding

  8. t -Intersecting constant dimension random network codes A dimension result t -intersecting constant weight code C . T HEOREM If | C | > ( w − t ) 2 + ( w − t ) + 1 , then C is sunflower. C OROLLARY If t = 1 and | C | = ( w − t ) 2 + ( w − t ) + 1 , then C is sunflower or set of incidence vectors of projective plane of order w. Leo Storme Random network coding

  9. t -Intersecting constant dimension random network codes A dimension result E XTENSION TO t - INTERSECTING CONSTANT DIMENSION RANDOM NETWORK CODES Let c 1 ∈ C , then c 1 = V ( k , q ) ≡ PG ( k − 1 , q ) . Identify c 1 with its binary incidence vector of weight q k − 1 q − 1 . Then | supp ( c 1 ∩ c 2 ) | = | PG ( t − 1 , q ) | = q t − 1 q − 1 . So C is transformed into binary ( q t − 1 q − 1 ) -intersecting binary constant weight code with w = q k − 1 q − 1 . So, if | C | > ( q k − q t q − 1 ) 2 + ( q k − q t q − 1 ) + 1, then C is sunflower. Leo Storme Random network coding

  10. t -Intersecting constant dimension random network codes A dimension result I MPROVEMENT TO UPPER BOUND FOR t = 1 (Bartoli, Riet, Storme, Vandendriessche) Assumptions: C = 1-intersecting constant dimension code of k -spaces. C not sunflower. � 2 � q k − q � q k − q � + 1 − q k − 2 . | C | ≤ + q − 1 q − 1 Leo Storme Random network coding

  11. t -Intersecting constant dimension random network codes A dimension result C ONJECTURE Conjecture: Let C be t -intersecting constant dimension random network code. If | C | > q k + q k − 1 + · · · + q + 1 , then C is sunflower. Leo Storme Random network coding

  12. t -Intersecting constant dimension random network codes A dimension result C OUNTEREXAMPLES TO CONJECTURE Code C of 1-intersecting 3-dimensional spaces in V ( 6 , 2 ) . Conjecture: If | C | > 15, then C is sunflower. Counterexample 1: (Etzion and Raviv) Code C of size 16 which is not sunflower. Counterexample 1: (Bartoli and Pavese) Code C of 1-intersecting 3-dimensional spaces in V ( 6 , 2 ) has size at most 20, and unique example of size 20. Leo Storme Random network coding

  13. t -Intersecting constant dimension random network codes A dimension result A DIMENSION RESULT Let C be ( k − t ) -intersecting constant dimension random network code of k -dimensional codewords. Let C = { π 1 , . . . , π n } . Maximal dimension for sunflower is dim � π 1 , . . . , π n � = k + t ( n − 1 ) . Question: From which dimension for � π 1 , . . . , π n � are we sure that C is sunflower? Leo Storme Random network coding

  14. t -Intersecting constant dimension random network codes A dimension result A DIMENSION RESULT T HEOREM (B ARROLLETA , D E B OECK , S TORME , S UÁREZ -C ANEDO , V ANDENDRIESSCHE ) If dim � π 1 , . . . , π n � ≥ k + ( t − 1 )( n − 1 ) + 2 , then C is sunflower. PROOF: Order codewords. δ i = dim � π 1 , . . . , π i � − dim � π 1 , . . . , π i − 1 � . Order codewords so that δ 2 ≥ δ 3 ≥ · · · ≥ δ n . Sequence ( δ 2 , . . . , δ n ) . δ 2 , . . . , δ n − 1 ≥ t − 1. Leo Storme Random network coding

  15. t -Intersecting constant dimension random network codes A dimension result D IMENSION RESULT IS SHARP T HEOREM (B ARROLLETA , D E B OECK , S TORME , S UÁREZ -C ANEDO , V ANDENDRIESSCHE ) If dim � π 1 , . . . , π n � ≥ k + ( t − 1 )( n − 1 ) + 2 , then C is sunflower. T HEOREM (B ARROLLETA , D E B OECK , S TORME , S UÁREZ -C ANEDO , V ANDENDRIESSCHE ) If dim � π 1 , . . . , π n � = k + ( t − 1 )( n − 1 ) + 1 , then C is sunflower, or one of two other types of examples. Leo Storme Random network coding

  16. t -Intersecting constant dimension random network codes A dimension result D IMENSION RESULT IS SHARP Leo Storme Random network coding

  17. t -Intersecting constant dimension random network codes A dimension result D IMENSION RESULT IS SHARP V = [ k − t + 2 ] fixed. W 1 , . . . , W n are [ k − t + 1 ] in V , not through common [ k − t ] . X 1 , . . . , X n are [ t − 1 ] , and codewords are π i = � W i , X i � , i = 1 , . . . , n . ( δ 2 , . . . , δ n ) = ( t , t − 1 , . . . , t − 1 ) . Leo Storme Random network coding

  18. t -Intersecting constant dimension random network codes A dimension result D IMENSION RESULT IS SHARP Leo Storme Random network coding

  19. t -Intersecting constant dimension random network codes A dimension result D IMENSION RESULT IS SHARP Type 1: π 1 = � V , N 1 � , . . . , π m = � V , N m � . Type 2: π m + 1 = � V , M m + 1 , p m + 1 � , . . . , π n − 1 = � V , M n − 1 , p n − 1 � . Type 3: π n = � W , X , n 1 , . . . , n m � . ( δ 2 , . . . , δ n ) = ( t , . . . , t , t − 1 , . . . , t − 1 , t + 1 − m ) . Leo Storme Random network coding

  20. t -Intersecting constant dimension random network codes A dimension result Thank you very much for your attention! Leo Storme Random network coding

Recommend


More recommend