a first gaia look at the inner halo
play

A First Gaia look at the inner halo* Giuliano Iorio DIFA, - PowerPoint PPT Presentation

A First Gaia look at the inner halo* Giuliano Iorio DIFA, University of Bologna IoA, Cambridge Vasily Belokurov, Denis Erkal, Sergey Koposov, Carlo Nipoti, Filippo Fraternali *Iorio et al., 2017, submitted, arXiv:1707.03833 The science of


  1. A First Gaia look at the inner halo* Giuliano Iorio DIFA, University of Bologna IoA, Cambridge Vasily Belokurov, Denis Erkal, Sergey Koposov, Carlo Nipoti, Filippo Fraternali *Iorio et al., 2017, submitted, arXiv:1707.03833 The science of Gaia and future challenge 01/09/2017 Lund

  2. Why study the Halo? DM Halo 10 12 Msun Disc 6x10 10 Msun Bulge 10 10 Msun Stellar Halo 10 9 Msun Lightest component of the MW! • Relic of the Galactic formation • Trace the Galactic potential

  3. Why study the Halo? DM Halo 10 12 Msun Disc 6x10 10 Msun Bulge 10 10 Msun Stellar Halo 10 9 Msun Lightest component of the MW! • Relic of the Galactic formation • Trace the Galactic potential How? • Counting of Halo Tracers: e.g. RRLyrae • PopII stars • Known absolute magnitude

  4. Star-counting results, so far: Different tracers: • K-Giants (e.g. Xue+15) • BHB (e.g. Deason+11, Das+16) • RRL (e.g. Sesar+10) BHB: Deason+2011 Halo properties: ρ ∝ m − α α ≈ 2 − 4 Power Law • q ≈ 0.4 − 0.8 Oblate • Only gross agreement and partial sky coverage..

  5. Star-counting results, so far: Different tracers: • K-Giants (e.g. Xue+15) • BHB (e.g. Deason+11, Das+16) • RRL (e.g. Sesar+10) BHB: Deason+2011 Halo properties: ρ ∝ m − α α ≈ 2 − 4 Power Law • q ≈ 0.4 − 0.8 Oblate • Only gross agreement and partial sky coverage.. The Gaia Revolution Gaia is a formidable all sky variable machine …. but RRLs available at the end of the missions (>2020)

  6. Exploiting DR1 Photometry in DR1 • G-band mean mag. • Mean Flux in G band • Std Flux in G band

  7. Exploiting DR1 Photometry in DR1 Variable star • G-band mean mag. • Mean Flux in G band • Std Flux in G band Variability in DR1 Non-Variable star

  8. Exploiting DR1 Photometry in DR1 Variable star • G-band mean mag. Variable star • Mean Flux in G band • Std Flux in G band Variability in DR1 Belokurov+17, Deason+17 ( ) AMP = log σ F F − 1 N obs Non-Variable star large small Variable Non-Variable

  9. Exploiting DR1 Photometry in DR1 • G-band mean mag. Variable star • Mean Flux in G band Variable star • Std Flux in G band Variability in DR1 Belokurov+17, Deason+17 RRLs ( ) AMP = log σ F F − 1 N obs large small Variable Non-Variable AMP alone is not enough… we need a colour! Cross-match with 2MASS!

  10. Final sample Selection Cuts (Driven by Bona Fide RRLs) -0.95< J*-G* <-0.4 ‘Colour Cut’ • *Magnitude corrected for dust extinction using E(B-V) from Schlegel+98 CRTS RRLs Stripe82 RRLs (Drake+13) (Sesar+10) Map: Gaia+2Mass

  11. Final sample Selection Cuts (Driven by Bona Fide RRLs) -0.95< J*-G* <-0.4 ‘Colour Cut’ • *Magnitude corrected for dust extinction -0.4<Amp<-0.7 ‘AMP Cut’ • using E(B-V) from Schlegel+98 Contamination analysis using Stripe82 Iorio+17 (arXiv:1707.03833)

  12. Final sample Selection Cuts (Driven by Bona Fide RRLs) -0.95< J*-G* <-0.4 ‘Colour Cut’ • *Magnitude corrected for dust extinction -0.4<Amp<-0.7 ‘AMP Cut’ • using E(B-V) from Schlegel+98 G* <17.1 ‘Uniform completeness’ • Completeness analysis using Stripe82 Not so complete… ….but we don’t care Iorio+17 (arXiv:1707.03833)

  13. Final sample Selection Cuts (Driven by Bona Fide RRLs) -0.95< J*-G* <-0.4 ‘Colour Cut’ • *Magnitude corrected for dust extinction -0.4<Amp<-0.7 ‘AMP Cut’ • using E(B-V) from Schlegel+98 G* <17.1 ‘Uniform completeness’ • |b|>10° • 85% of the stars has E(B-V)<0.25 1% of the stars has E(B-V)>0.8

  14. Final sample From sky to physical coordinates (X g ,Y g ,Z g ) (l,b, G ) D ⊙ ( M G )

  15. Final sample From sky to physical coordinates (X g ,Y g ,Z g ) (l,b, G ) D ⊙ ( M G ) < M G >= 0.53 < σ M G >= 0.09 Iorio+17 (arXiv:1707.03833) • Little spread around median

  16. Final sample From sky to physical coordinates (X g ,Y g ,Z g ) (l,b, G ) D ⊙ ( M G ) • Little spread around median • M G distribution almost constant with b

  17. Final sample From sky to physical coordinates (X g ,Y g ,Z g ) (l,b, G ) D ⊙ ( M G ) • Little spread around median M G =0.53 for all the stars • M G distribution almost constant with b

  18. Final sample Properties about 22000 stars Contamination < 10% Completeness 20% D ⊙ ≈ 0.5 − 20 kpc D G ≈ 1 − 28 kpc Sampled Vol. fraction: tot ≈ 50% f V Previous works < 20% (e.g. Deason+11)

  19. Final sample Properties Sky distribution about 22000 stars Contamination < 10% Completeness 20% D ⊙ ≈ 0.5 − 20 kpc D G ≈ 1 − 28 kpc Sampled Vol. fraction: tot ≈ 50% f V Previous works < 20% (e.g. Deason+11) Iorio+17 (arXiv:1707.03833)

  20. Exploring the Halo Density in the RZ plane • Disky at low Z • Ellipsoidal at high Z Iorio+17 (arXiv:1707.03833)

  21. Exploring the Halo Density profile Assumption: Density stratified on ellipsoids m= x 2 + p − 2 y 2 + q − 2 z 2 ρ = ρ (m) m [kpc] Iorio+17 (arXiv:1707.03833)

  22. Exploring the Halo m= x 2 + p − 2 y 2 + q − 2 z 2 Flattening ρ = ρ (m) θ m

  23. Exploring the Halo m= x 2 + p − 2 y 2 + q − 2 z 2 Flattening ρ = ρ (m) θ m Mock sample: q true =0.5 p true =1

  24. Exploring the Halo m= x 2 + p − 2 y 2 + q − 2 z 2 Flattening ρ = ρ (m) θ m m [kpc] m [kpc]

  25. Exploring the Halo m= x 2 + p − 2 y 2 + q − 2 z 2 Flattening ρ = ρ (m) θ m m [kpc] m [kpc]

  26. Exploring the Halo m= x 2 + p − 2 y 2 + q − 2 z 2 Flattening ρ = ρ (m) θ m m [kpc] m [kpc]

  27. Exploring the Halo m= x 2 + p − 2 y 2 + q − 2 z 2 Flattening ρ = ρ (m) θ m Direct evidence of a change of flattening

  28. Exploring the Halo MCMC Likelihood sampling • Exclude the disky structure | θ | > 20 ! about half of RRLs in our sample • No due to disc cont. (Rd=2.6, zd=0.2) • Maybe Monoceros (e.g. Juric+08) or related to Gaia DR1 problems at low latitude m [kpc]

  29. Exploring the Halo MCMC Likelihood sampling • Exclude the disky structure | θ | > 20 ! about half of RRLs in our sample • No due to disc cont. (Rd=2.6, zd=0.2) • Maybe Monoceros (e.g. Juric+08) or related to Gaia DR1 problems at low latitude m [kpc]

  30. Exploring the Halo MCMC Likelihood sampling • Exclude the disky structure | θ | > 20 ! • Halo model Halo recipes • Density • Shape • Spherical • Single Power Law • Axisymmetric • Double Power Law • Triaxial • Broken Power Law • Tilted • Core Power Law • Off-set • Einasto • Varyng q m [kpc]

  31. Exploring the Halo MCMC Likelihood sampling - Main results • No strong evidence of deviation from a SPL ρ ∝ m − 2.95

  32. Exploring the Halo MCMC Likelihood sampling - Main results ρ ∝ m − 2.95 • No strong evidence of deviation from a SPL • Triaxial: flattening along Z (q=0.6), elongation along Y(p=1.3) 22°

  33. Exploring the Halo MCMC Likelihood sampling - Main results ρ ∝ m − 2.95 • No strong evidence of deviation from a SPL • Triaxial: flattening along Z (q=0.6), elongation along Y(p=1.3) • q increasing with m Iorio+17 (arXiv:1707.03833) m

  34. Exploring the Halo MCMC Likelihood sampling - Main results ρ ∝ m − 2.95 • No strong evidence of deviation from a SPL • Triaxial: flattening along Z (q=0.6), elongation along Y(p=1.3) • q increasing with m • No significant off-set (d offset ) wrt GC or tilt wrt G. plane tilt < 6 ° d offset = 0.43 ± 0.07 kpc X offset = 0.39 ± 0.05 kpc Compatible with uncertainties in Sun dist. wrt GC McMillan+10

  35. Conclusions First analysis of RRLs in the inner halo (Rg<28 kpc) using Gaia data*: ρ ∝ m − 2.95 • Density is a Single Power Law (q ≈ 0.6) • The halo is Triaxial and highly flattened along Z • Flattening changes with radius becoming more spherical GAIA DR2 expected for April 2018 Release of Gaia colors! • Get rid of 2MASS • Extend this analysis up to 90 kpc! Thank you for your attention! *Iorio et al., 2017, submitted, arXiv:1707.03833

  36. EXTRA

  37. Exploring the Halo MCMC Likelihood sampling - Main results q = 0.56 → 0.82 ρ = m − 2.95 p = 1.25 Iorio+17 (arXiv:1707.03833)

  38. Exploring the Halo MCMC Likelihood sampling - Main results q = 0.56 → 0.82 ρ = m − 2.95 p = 1.25 Iorio+17 (arXiv:1707.03833)

  39. Iorio+17 (arXi CRTS RRLs Stripe82 RRLs CRTS RRLs Stripe82 RRLs (Drake+13) (Sesar+10) (Drake+13) (Sesar+10) Map: Gaia+2Mass

  40. Exploring the Halo

  41. G distribution

  42. Z distribution

  43. Structures Structures - Low Latitude • Extended disky feature • It contains about half of RRLs in our sample • It cannot be explained (entirely) by the Galactic disc Data Disc+ halo model (Juric+08) ρ It could be Monoceros (e.g. Juric+08) or related to Gaia DR1 problems at low latitude

  44. Structures Structures - Low Latitude • Extended disky feature • It contains about half of RRLs in our sample • It cannot be explained (entirely) by the Galactic disc It could be Monoceros (e.g. Juric+08) or related to Gaia DR1 problems at low latitude

  45. Structures Structures - High Latitude • Overdensity at very high-latitude Yg Yg Xg It is likely related to the Virgo Overdensity (Bell+08)

  46. Z-Slab

  47. Rz Residuals

  48. Flattening: previous works m [kpc]

  49. Dens models m [kpc] m [kpc]

Recommend


More recommend