a brief history of pcr
play

A brief History of PCR Dr. Richard Molenkamp Medical Molecular - PowerPoint PPT Presentation

A brief History of PCR Dr. Richard Molenkamp Medical Molecular Microbiologist Structure of DNA Visualisation of DNA I Staining Hybridisation Direct Visualisation of DNA II Small amounts of signal: Need amplification PCR: Polymerase Chain


  1. A brief History of PCR Dr. Richard Molenkamp Medical Molecular Microbiologist

  2. Structure of DNA

  3. Visualisation of DNA I Staining Hybridisation Direct

  4. Visualisation of DNA II Small amounts of signal: Need amplification PCR: Polymerase Chain Reaction

  5. Principle of PCR Conventional thermocycle profile:

  6. Exponential amplification Number of cycli on an agarose gel: 10 15 20 25 30 35 40

  7. Early PCR Addition of polymerase in each cycle Breakthrough: Thermostable (Taq) polymerase Integrated Thermocyclers

  8. Conventional PCR = End point analysis no quantitative data Real-time PCR

  9. Sybrgreen reactions - Intercalating fluorescence DNA Target Sequence Denaturation Drawback: a-specifc product also fluoresent!

  10. Lens Dichrome Mirror MUX LASER Sample block Lens Spectrograph CCD camera

  11. Amplification curves

  12. Sybrgreen reactions – melting curve analysis

  13. Detection Formats (I) Probe-based - Taqman technology: specific double-dyed fluorescent hydrolysis probes - FRET (Fluorescence Resonance Energy Transfer): hybridisation probes - Partially double stranded, single-dyed, hybridisation probes R R Q Q – Long target-specific probe w – – – – –

  14. Excitation / emission of fluorophores TAMRA quenching Fluorescence Deep Dark/Black hole quenchers

  15. 5’ Nuclease Assay / Taqman assay F = reporter  FAM, VIC, Hex … Q = quencher  Black hole quencher (BHQ)….

  16. Hybridization probes or FRET probes

  17. Partially double stranded linear DNA probes R R Q Q – Long target-specific probe with fluor – Short quencher probe – Fluorescence quenched when probes are hybridized – Long probe preferentially binds target – Short quencher probe is dissociated – Fluorescence is detected Excitation Excitation Emission Emission R

  18. Probe free: MultiCode technology (I) MultiCode Base Pair (isoC:isoG) Iso C Iso G Scott C etal, Nucl. Ac. Res. 2004

  19. MultiCode PCR (II)

  20. MultiCode technology

  21. Ct / Cp / Cq Calling

  22. Ct calling I PCR positivity measured at Cycle threshold (Ct)-level Fluorescence Threshold Cycle Background fluorescence 10x SD background 10 30 0 20 Number of cycles

  23. Ct calling II PCR positivity measured at Cycle threshold (Ct)-level Fluorescence Threshold Cycle Background fluorescence 10x SD background 20 10 30 0 Number of cycles

  24. Cp calling I PCR positivity measured 2 nd derivative max. Fluorescence Crossing point Calculates 2nd derivative and determines its maximum. Background fluorescence  CP: Where the rate of increase of fluorescence is greatest 10 30 0 20 Number of cycles

  25. Cp calling II PCR positivity measured 2 nd derivative max. Fluorescence 10 30 0 20 Number of cycles

  26. Quantification

  27. Quantification with real-time PCR

  28. Principles of quantification – real time PCR Calculation of efficiency

  29. Reverse transcription PCR

  30. Reverse transcription PCR Mix of RT and PCR enzyme: M-MLV / Taqgold Enzyme with RT and DNA pol activity rTth

  31. Sequence variation Influences design of PCR PCR can be used to detect variation

  32. HIV-1 group M sequence variation in Gag and Pol genes

  33. Influence of mismatches on hybridization temperature Length 27 nt GC content 60% Tm 69 ºC tgggaggttctctccagcactagcagg Tm 62.6 ºC tgggaggttctctccagcactagcagg a t Tm 57.8 ºC tgggaggttctctccagcactagcagg a t a

  34. How to deal with sequence variation  Degenerate oligos  GGTAYCCATGRTCAG IUB codes R = A or G Y = C or T  Dual target assay  Dual probe assay

  35. Dual target real time PCR Genome HIV 5’ - - 3’ Integrase LTR If there is a mutation in either of the primer/probe sites  the other PCR will ‘take over‘

  36. Realtime PCR for detection of single mutations  Conventional Sanger sequencing: ~25%  Sensitive methods:  LIPA/DNA microarray (hybridisation) 5-10%  Allele-specific PCR ~5%  Next generation sequencing (0.5% ?)  Quantitative real-time techniques: 1-10%  LNA/MGB probes (short high affinity probes)  Digital PCR

  37. Probes used for detection of single mutations (I) Minor groove binding probes Locked nucleic acid probes • Due to higher affinity binding shorter probes can be defined • Taqman probes are 22-30 nt long; LNA/MGB probes 8-20 nt long

  38. Hybridization temperature: effect in MGB and LNA probes Length 27 nt tgggaggttctctccagcactagcagg Tm 69 ºC tgggaggttctctccagcactagcagg Tm 62.6 ºC a t tgggaggttctctccagcactagcagg Tm 57.8 ºC a t a Length 17 nt GGAGG(+T)T(+C)TCT(+C)CAG(+C)A Tm 69 ºC GGAGG(+T)T(+C)TCT(+C)CAG(+C)A Tm 59 ºC A

  39. Detection of oseltamivir resistant influenza A/H1N1 H274Y by real-time discrimination PCR using LNA probes T (mut) NA: 5’atcgaaaagggaaaggttactaaatcaatagagttaaatgcacccaatttt C attatgaggaatgttcctgttacccagacactggc 3’ LNA:H274Y N1274Yfpr1 N1274Yrpr1 (30bp) (24bp) LNA:H274H (16bp) Mutant cluster + control + control Wild-type cluster + control + control NTC NTC

  40. Detection of lamivudine resistance in HBV Pas et al., Journal of Clinical Virology 32 (2005) 166 – 172

  41. Effect of (enzyme) mastermix on mismatch tolerance

  42. Influence of mastermix on primer bindingsite mismatch tolerance > 50 different mutants Stadhouders et al., J. Mol. Diag., 2010

  43. Primer bindingsite mismatch tolerance

  44. Influence of mastermix on primer bindingsite mismatch tolerance MMLV / Taqgold combination (ABI): RT @ 48°C

  45. Influence of mastermix on primer bindingsite mismatch tolerance rTth based mastermix: RT@60°C

  46. Digital PCR Fluidigm Biorad QX200 droplet PCR Raindance technologies Quant studio

  47. Principle of digital PCR (dPCR) Limited dilution Poisson distribution 0 0.368 1 0.368 2 0.184 3 0.061 4 0.015 5 0.003 >5 0.001

  48. 1 1. Manual dilution 2. Droplet PCR (ddPCR, Biorad) 2 3. Lab on a chip (Lifetechnologies) 3 4. Microfluidics (Fluidigm) 4

  49. Applications of dPCR  Rare sequence / mutation detection (oncology, virology drug resistance)  Copy number quantification (standardisation controls)  Low level pathogen detection (in difficult samples)  Gene-expression (absolute quant. of (un)stimulated) gene expression)

  50. Questions ?

Recommend


More recommend