a brief historical introduction to random matrix theory
play

A Brief historical introduction to random matrix theory Satya N. - PowerPoint PPT Presentation

A Brief historical introduction to random matrix theory Satya N. Majumdar Laboratoire de Physique Th eorique et Mod` eles Statistiques,CNRS, Universit e Paris-Sud, France S.N. Majumdar A Brief historical introduction to random matrix


  1. A Brief historical introduction to random matrix theory Satya N. Majumdar Laboratoire de Physique Th´ eorique et Mod` eles Statistiques,CNRS, Universit´ e Paris-Sud, France S.N. Majumdar A Brief historical introduction to random matrix theory

  2. First Appearence of Random Matrices S.N. Majumdar A Brief historical introduction to random matrix theory

  3. Covariance Matrix math phys. in general 1 X X 12 11 (MxN) X = X 22 X X 21 2 X 3 X 31 32 in general X 11 X 21 X 31 X t = (NxM) X 12 X X 22 32 2 2 2 W= X t X = X 11 + X 21 + X 31 X 11 X 12 + X 21 X 22 + X 31 X 32 2 + X 2 2 + X 22 X 22 X 21 + X + X 31 X 12 X 12 X 11 32 32 (unnormalized) (NxN) COVARIANCE MATRIX S.N. Majumdar A Brief historical introduction to random matrix theory

  4. Covariance Matrix math phys. in general 1 X X 12 11 (MxN) X = X X 22 X 21 2 X 3 X 31 32 in general X 11 X 21 X 31 X t = (NxM) X 12 X X 22 32 2 2 2 W= X t X = X 11 + X 21 + X 31 X 11 X 12 + X 21 X 22 + X 31 X 32 2 + X 2 2 + X 22 X 22 X 21 + X + X 31 X 12 X 12 X 11 32 32 (unnormalized) (NxN) COVARIANCE MATRIX Null model → random data: X → random ( M × N ) matrix → W = X t X → random N × N matrix (Wishart, 1928) S.N. Majumdar A Brief historical introduction to random matrix theory

  5. RMT in Nuclear Physics: Eugene Wigner S.N. Majumdar A Brief historical introduction to random matrix theory

  6. S.N. Majumdar A Brief historical introduction to random matrix theory

  7. Random Matrices in Nuclear Physics spectra of heavy nuclei �� �� � �� �� �� �� �� �� �� �� �� � � �� �� �� � � � � �� �� � � �� �� � 238 U E 232 Th E WIGNER (’50) : replace complex H by random matrix DYSON, GAUDIN, MEHTA, ..... S.N. Majumdar A Brief historical introduction to random matrix theory

  8. Applications of Random Matrices Physics: nuclear physics, quantum chaos, disorder and localization, mesoscopic transport, optics/lasers, quantum entanglement, neural networks, gauge theory, QCD, matrix models, cosmology, string theory, statistical physics (growth models, interface, directed polymers...), cold atoms,.... Mathematics: Riemann zeta function (number theory), free probability theory, combinatorics and knot theory, determinantal points processes, integrable systems, ... Statistics: multivariate statistics, principal component analysis (PCA), image processing, data compression, Bayesian model selection, ... Information Theory: signal processing, wireless communications, .. Biology: sequence matching, RNA folding, gene expression network ... Economics and Finance: time series analysis,.... Recent Ref: The Oxford Handbook of Random Matrix Theory ed. by G. Akemann, J. Baik and P. Di Francesco (2011) S.N. Majumdar A Brief historical introduction to random matrix theory

  9. Focus of this course: physical applications Random Matrices and Cold Atoms S.N. Majumdar A Brief historical introduction to random matrix theory

  10. ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� Ultracold atoms in a harmonic trap Recent great progress in the experimental manipulation of cold atoms ⇒ to investigate the interplay between quantum and statistical behaviors in many-body systems at low temperatures S.N. Majumdar A Brief historical introduction to random matrix theory

  11. Ultracold atoms in a harmonic trap Recent great progress in the experimental manipulation of cold atoms ⇒ to investigate the interplay between quantum and statistical behaviors in many-body systems at low temperatures A common feature of these experiments ⇒ presence of a confining harmonic potential that traps the particles within a limited spatial region harmonic trap ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� x S.N. Majumdar A Brief historical introduction to random matrix theory

  12. Fermi microscope “Quantum-Gas Microscope for Fermionic Atoms”, L.W. Cheuk et. al., PRL, 114, 193001 (2015) S.N. Majumdar A Brief historical introduction to random matrix theory

  13. Spinless Fermi gas in a harmonic potential harmonic trap A particularly simple system: 1-d spinless Fermions at T = 0 in a harmonic trap ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� x L −L S.N. Majumdar A Brief historical introduction to random matrix theory

  14. Spinless Fermi gas in a harmonic potential harmonic trap A particularly simple system: 1-d spinless Fermions at T = 0 in a harmonic trap ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� x L −L Observable of interest: No. of particles in a box [ − L , L ] � L ˆ n ( x ) ≡ c † ( x ) c ( x ) N L = dx ˆ n ( x ) where ˆ − L S.N. Majumdar A Brief historical introduction to random matrix theory

Recommend


More recommend