a bijection between ew tableaux and permutation tableaux
play

A bijection between EW tableaux and permutation tableaux Thomas - PowerPoint PPT Presentation

A bijection between EW tableaux and permutation tableaux Thomas Selig joint work with Jason Smith and Einar Steingr msson SLC 78, Ottrott 28 March, 2017 Thomas Selig EW tableaux and permutation tableaux Ferrers diagram Definition A


  1. A bijection between EW tableaux and permutation tableaux Thomas Selig joint work with Jason Smith and Einar Steingr´ ımsson SLC 78, Ottrott 28 March, 2017 Thomas Selig EW tableaux and permutation tableaux

  2. Ferrers diagram Definition A Ferrers diagram is a left-aligned collection of cells with a finite number of rows and columns such that the number of cells in each row is weakly decreasing. (a) F (b) F ′ F ′ is the Ferrers diagram F with an extra column on the left-hand side. Thomas Selig EW tableaux and permutation tableaux

  3. EW -tableaux Definition (Ehrenborg, van Willigenburg 04) An EW -tableau (EWT) T is a 0–1 filling of a Ferrers diagram that satisfies the following properties: 1 The top row of T has a 1 in every cell. 2 Every other row has at least one 0. 3 No four cells of T that form the corners of a rectangle have 0s in two diagonally opposite corners and 1s in the other two. The size of a EW -tableau is one less than the sum of its number of rows and number of columns. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 (c) an EWT (d) not an EWT Thomas Selig EW tableaux and permutation tableaux

  4. EWTs and acyclic orientations G ( F ) F

  5. EWTs and acyclic orientations 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 G ( F ) F

  6. EWTs and acyclic orientations 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 G ( F ) F Thomas Selig EW tableaux and permutation tableaux

  7. EWTs and acyclic orientations 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 G ( F ) F (0 = ↑ = | , 1 = ↓ = | ) Thomas Selig EW tableaux and permutation tableaux

  8. EWTs and acyclic orientations 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 G ( F ) F (0 = ↑ = | , 1 = ↓ = | ) EWT ( F ) ↔ { Ac. Or. of G(F) where top-left vertex = unique source } . Thomas Selig EW tableaux and permutation tableaux

  9. Permutation tableaux Definition (Postnikov 06) A permutation tableau (PT) T is a 0–1 filling of a Ferrers diagram, some of whose bottom-most rows may be empty, satisfying the following properties: 1 Every column of T has a 1 in some cell. 2 If a cell has a 1 above it in the same column and a 1 to its left in the same row then it has a 1. The size of a permutation tableau is the sum of its number of rows and number of columns. 0 0 0 1 0 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 0 (e) a PT (f) not a PT Thomas Selig EW tableaux and permutation tableaux

  10. The main result Theorem (Ehrenborg, van Willigenburg 04; S., Smith, Steingr´ ımsson ++) Let F be a Ferrers diagram (possibly with some empty rows). Then the number of PTs of shape F and the number of EWTs of shape F ′ are the same. Thomas Selig EW tableaux and permutation tableaux

  11. The main result Theorem (Ehrenborg, van Willigenburg 04; S., Smith, Steingr´ ımsson ++) Let F be a Ferrers diagram (possibly with some empty rows). Then the number of PTs of shape F and the number of EWTs of shape F ′ are the same. Formulation in different but equivalent form by EW (04). Proof is recursive. Thomas Selig EW tableaux and permutation tableaux

  12. The main result Theorem (Ehrenborg, van Willigenburg 04; S., Smith, Steingr´ ımsson ++) Let F be a Ferrers diagram (possibly with some empty rows). Then the number of PTs of shape F and the number of EWTs of shape F ′ are the same. Formulation in different but equivalent form by EW (04). Proof is recursive. A more bijective proof by Josuat-Verg` es (10). Thomas Selig EW tableaux and permutation tableaux

  13. The main result Theorem (Ehrenborg, van Willigenburg 04; S., Smith, Steingr´ ımsson ++) Let F be a Ferrers diagram (possibly with some empty rows). Then the number of PTs of shape F and the number of EWTs of shape F ′ are the same. Formulation in different but equivalent form by EW (04). Proof is recursive. A more bijective proof by Josuat-Verg` es (10). We present a bijection through permutations. Thomas Selig EW tableaux and permutation tableaux

  14. Map of the proof T ′ ∈ EWT ( n ) T ∈ PT ( n ) shape( T ) = F shape( T ′ ) = F ′ Φ Ψ σ ∈ S n τ ∈ S n ?? ?? ˜ σ ∈ S n CS ED ?? Thomas Selig EW tableaux and permutation tableaux

  15. The map Φ from permutation tableaux to permutations 9 8 6 5 3 0 0 0 1 0 1 1 0 1 1 1 1 2 2 3 0 0 1 1 4 4 1 1 6 5 7 7 9 8 10 10 Label the rows and columns of the permutation tableau; Thomas Selig EW tableaux and permutation tableaux

  16. The map Φ from permutation tableaux to permutations 9 8 6 5 3 0 0 0 1 0 1 1 0 1 1 1 1 2 2 3 0 0 1 1 4 4 1 1 6 5 7 7 9 8 10 10 Label the rows and columns of the permutation tableau; For each 1 ≤ i ≤ n , construct the path from i to σ i : enter the row, resp. column, labelled i from the left, resp. top; traverse cells with 0; turn S → E or E → S when cell is 1; σ i is the label of the edge through which the path exits on the South-East border; Thomas Selig EW tableaux and permutation tableaux

  17. The map Φ from permutation tableaux to permutations 9 8 6 5 3 0 0 0 1 0 1 1 0 1 1 1 1 2 2 3 0 0 1 1 4 4 1 1 6 5 7 7 9 8 10 10 Label the rows and columns of the permutation tableau; For each 1 ≤ i ≤ n , construct the path from i to σ i : enter the row, resp. column, labelled i from the left, resp. top; traverse cells with 0; turn S → E or E → S when cell is 1; σ i is the label of the edge through which the path exits on the South-East border; We get a map Φ( T ) := σ 3 7 2 6 1 4 9 5 8 10 σ i 10 . i 1 2 3 4 5 6 7 8 9 Thomas Selig EW tableaux and permutation tableaux

  18. The map Φ from permutation tableaux to permutations 9 8 6 5 3 0 0 0 1 0 1 1 0 1 1 1 1 2 2 3 7 2 6 1 4 9 5 8 10 Φ σ : σ i 3 0 0 1 1 4 4 i 1 2 3 4 5 6 7 8 9 10 1 1 6 5 7 7 9 8 10 10 For σ ∈ S n , w ex ( σ ) := { 1 ≤ i ≤ n ; i ≤ σ i } (weak excedences). Theorem (Steingr´ ımsson, Williams 07) Let F be a Ferrers diagram of size n with row labels RL ( F ), then Φ : PT ( F ) − → { σ ∈ S n ; w ex ( σ ) = RL ( F ) } is a bijection. Thomas Selig EW tableaux and permutation tableaux

  19. The map Φ is a bijection 9 8 6 5 3 0 0 0 1 0 1 1 0 1 1 1 1 2 2 Φ 3 7 2 6 1 4 9 5 8 10 σ : σ i 0 0 1 1 3 4 4 1 2 3 4 5 6 7 8 9 10 i 6 5 1 1 7 7 9 8 10 10 Φ : PT ( F ) − → { σ ∈ S n ; w ex ( σ ) = RL ( F ) } σ : { 1 , · · · , n } → { 1 , · · · , n } is a bijection (can construct σ − 1 ). w ex ( σ ) = RL ( F ). Φ is a bijection. We can construct Φ − 1 . Thomas Selig EW tableaux and permutation tableaux

  20. Progress of the proof T ′ ∈ EWT ( n ) T ∈ PT ( n ) RL ( T ) shape( T ′ ) = F ′ Φ σ ∈ S n τ ∈ S n ?? w ex ( σ ) σ ∈ S n ˜ ?? Thomas Selig EW tableaux and permutation tableaux

  21. Cyclic Shift CS For σ = σ 1 · · · σ n ∈ S n , define ˜ σ := CS ( σ ) = σ 2 · · · σ n σ 1 . Thomas Selig EW tableaux and permutation tableaux

  22. Cyclic Shift CS For σ = σ 1 · · · σ n ∈ S n , define ˜ σ := CS ( σ ) = σ 2 · · · σ n σ 1 . 3 7 2 6 1 4 9 5 8 10 CS : σ i 1 2 3 4 5 6 7 8 9 10 i CS ˜ 7 2 6 1 4 9 5 8 10 3 σ i 1 2 3 4 5 6 7 8 9 10 i Thomas Selig EW tableaux and permutation tableaux

  23. Cyclic Shift CS For σ = σ 1 · · · σ n ∈ S n , define ˜ σ := CS ( σ ) = σ 2 · · · σ n σ 1 . 3 7 2 6 1 4 9 5 8 10 CS : σ i 1 2 3 4 5 6 7 8 9 10 i CS ˜ 7 2 6 1 4 9 5 8 10 3 σ i 1 2 3 4 5 6 7 8 9 10 i For ˜ σ ∈ S n , exc (˜ σ ) := { 1 ≤ i ≤ n ; i < ˜ σ i } ((strong) excedences). Proposition For any 2 ≤ a 1 < · · · < a k , CS : { σ ∈ S n ; w ex ( σ ) = { 1 , a 1 , · · · , a k }} − → { ˜ σ ∈ S n ; exc (˜ σ ) = { a 1 − 1 , · · · , a k − 1 }} is a bijection. Thomas Selig EW tableaux and permutation tableaux

  24. Progress of the proof T ′ ∈ EWT ( n ) T ∈ PT ( n ) RL ( T ) shape( T ′ ) = F ′ Φ σ ∈ S n τ ∈ S n w ex ( σ ) ?? σ ∈ S n ˜ CS exc (˜ σ ) Thomas Selig EW tableaux and permutation tableaux

  25. σ �→ τ The map ED : ˜ Algorithm: inputs ˜ σ , outputs τ . 0. Initialise τ = ∅ . 1. j = min { 1 ≤ i ≤ n ; i �∈ τ } . If j = + ∞ return τ . Else j ′ = j and proceed to 2. σ k = j ′ . τ ← τ ∗ k . If k � = j then j ′ = k and 2. Find k s.t. ˜ repeat 2. Else return to 1. Thomas Selig EW tableaux and permutation tableaux

  26. σ �→ τ The map ED : ˜ Algorithm: inputs ˜ σ , outputs τ . 0. Initialise τ = ∅ . 1. j = min { 1 ≤ i ≤ n ; i �∈ τ } . If j = + ∞ return τ . Else j ′ = j and proceed to 2. σ k = j ′ . τ ← τ ∗ k . If k � = j then j ′ = k and 2. Find k s.t. ˜ repeat 2. Else return to 1. σ : ˜ 7 2 6 1 4 9 5 8 10 3 σ i Example: ˜ i 1 2 3 4 5 6 7 8 9 10 Thomas Selig EW tableaux and permutation tableaux

  27. σ �→ τ The map ED : ˜ Algorithm: inputs ˜ σ , outputs τ . 0. Initialise τ = ∅ . 1. j = min { 1 ≤ i ≤ n ; i �∈ τ } . If j = + ∞ return τ . Else j ′ = j and proceed to 2. σ k = j ′ . τ ← τ ∗ k . If k � = j then j ′ = k and 2. Find k s.t. ˜ repeat 2. Else return to 1. σ : ˜ 7 2 6 1 4 9 5 8 10 3 σ i Example: ˜ i 1 2 3 4 5 6 7 8 9 10 τ = Thomas Selig EW tableaux and permutation tableaux

Recommend


More recommend