XXXV Konferencja Statystyka Matematyczna -7-11/ XII 2009 1
Statistical Inference for Image Symmetries Mirek Pawlak pawlak@ee.umanitoba.ca 2
OUTLINE I Problem Statement II Image Representation in the Radial Basis Domain III Semiparametric Inference for Image Symmetry 3
IV Testing for Image Symmetries* • Testing Rotational Symmetries* • Testing Radiality • Testing Reflection and Joint Symmetries V References 4
I Problem Statement 5
• • • • ( ) + ε ij Z ij = f x i , y j 6
D Δ p ij • ( ) + ε ij Z ij = f x i , y j # of data points ∝ n 2 ; Δ ∝ n − 1 7
( ) . Given Problem 1 : Let f ∈ L 2 D ( ) + ε ij , 1 ≤ i , j ≤ n Z ij = f x i , y j and knowing that ( ) ( ) + y sin 2 β ∗ ( ) , x sin 2 β ∗ ( ) − y cos 2 β ∗ ( ) ( ) = f x cos 2 β ∗ f x , y some β ∗ ∈ 0, π [ ) , estimate β ∗ . 8
( ) . Given Problem 1 : Let f ∈ L 2 D ( ) + ε ij , 1 ≤ i , j ≤ n Z ij = f x i , y j and knowing that ( ) ( ) + y sin 2 β ∗ ( ) , x sin 2 β ∗ ( ) − y cos 2 β ∗ ( ) ( ) = f x cos 2 β ∗ f x , y some β ∗ ∈ 0, π [ ) , estimate β ∗ . 9
( ) . Given Problem 2 : Let f ∈ L 2 D ( ) + ε ij , 1 ≤ i , j ≤ n Z ij = f x i , y j verify whether the null hypothesis ( ) ≡ Sf ( ) x , y ( ) H S : f x , y is true or not ( ) x , y ( ) : Reflectional Symmetry, Rotational Symmetry Sf 10
d = 3 d = 8 d = 4 d = 2 An image becomes invariant under rotations through an angle 2 π d d = ∞ Radially Symmetric Objects ( ) x 2 + y 2 ( ) = g f x , y 11
Symmetry → Hermann Weyl, Symmetry, Princenton Univ. Press, 1952. → J.Rosen, Symmetry in Science: An Introduction to the General Theory , Springer, 1995. → J.H. Conway, H. Burgiel, and C. Goodman-Strauss, The Symmetry of Things , A K Peters, 2008. → M. Livio, The Equation That Couldn’t Be Solved: How Mathematical Genius Discovered the Language of Symmetry , Simon & Schuster, 2006. “...Livio writes passionately about the role of symmetry in human perception, arts,....” 12
13
14
15
II Image Representation in the Radial Basis Domain 16
Radial Moments and Expansions (Zernike Basis) ( ) = ( ) ( ) dxdy ∫∫ ∗ x , y • A pq f f x , y V pq D Degree 2 π ( ) ( ) e − iq θ ρ d ρ d θ 1 ∫ ∫ = f ρ , θ R pq ρ 0 0 Angular dependence Bhatia & Born: “On circle polynomials of Zernike and related orthogonal sets”. Proc. Cambr. Phil. Soc . 1954 ∞ p + 1 ∑ ∑ ( ) ∍ f x , y ( ) ( ) V pq x , y ( ) L 2 D A pq f • π p = 0 q ≤ p 17
Invariant Properties → Reflection ( ) x , y ( ) τ β f ( ) f x , y ( ) = A pq ( ) e − i 2 q β ( ) ∗ A pq τ β f f A pq f 18
→ Rotation ( ) x , y ( ) ( ) r α f f x , y ( ) = A pq f ( ) ( ) e − iq α A pq f A pq r α f 19
( ) from noisy data A pq f D Δ p ij • ( ) + ε ij Z ij = f x i , y j ( ) Z ij ∑ ( ) = ˆ A pq f w pq x i , y j ( ) ∈ D x i , y j ( ) = ( ) ( ) dxdy ∫∫ ∗ x , y ∗ x i , y j ≈ Δ 2 V pq w pq x i , y j V pq p ij 20
( ) + D pq Δ ( ) + G pq Δ ( ) E ˆ A pq = A pq f ( ) = O Δ ( ) D pq Δ ( ) ( ) = O Δ γ G pq Δ 1 < γ = 285 208 *Gauss lattice points problem of a circle * 21
III Semiparametric Inference for Image Symmetry ( ) , Estimation of symmetry parameters: the axis of symmetry β the degree of rotational symmetry ( d ) of nonparametric image ( ) , f ∈ L 2 D ( ) . function: θ = θ f d ∗ β ∗ 22
Semiparametric Inference on the Axis of Reflectional Symmetry ( ) = e − 2 iq β A p , − q f ( ) A pq τ β f β • 23
• Contrast Function p + 1 p N ∑ ∑ ( ) = ( ) − e − 2 iq β A p , − q f ( ) 2 M N β , f A pq f π p = 0 q = − p N ∞ p + 1 p ∑ ∑ ( ) = ( ) − e − 2 iq β A p , − q f ( ) 2 M β , f A pq f π p = 0 q = − p 2 = f − τ β f 24
• Assumption ( ) is invariant under some unique reflection Suppose that f ∈ L 2 D τ β ∗ Hence, if τ β ∗ f = f then we have ( ) = 0 M β ∗ , f or ( ) = 0 for all N M N β ∗ , f 25
• Uniqueness of β ∗ Lemma U : Under Assumption the solution of ( ) = 0 M N β , f is uniquely determined and must equal β ∗ if we choose N so { } for which the gcd of ( ) contains A pq f ( ) ≠ 0 large that M N β , f q ’s is 1. { } , p i ≤ N , i = 1,.., r ( ) ≠ 0,..., A p r q r ( ) ≠ 0 A p 1 q 1 f f ( ) = 1 . gcd q 1 ,..., q r 26
β * = 120 27
( ) based only on A 42 f ( ) , A 86 f ( ) M N β , f 28
( ) based only on A 51 f ( ) , A 86 f ( ) M N β , f 29
p + 1 p 14 ∑ ∑ ( ) = ( ) − e − 2 iq β A p , − q f ( ) 2 M 14 β , f A pq f π p = 0 q = − p 30
( ) = A pq f ( ) e ( ) ir pq f A pq f p + 1 ( ) p ( ) N 2 1 − cos 2 r pq f ∑ ∑ ( ) = ( ) ( ) + 2 q β ⇒ M N β , f 4 A pq f π p = 0 q = − p ⇒ β ∗ : ( ) + q β ∗ = l π r pq f ( ) with A pq f ( ) ≠ 0 . for all p , q 31
• Estimated Contrast Function p + 1 p N ∑ ∑ ( ) = 2 A pq − e − 2 iq β ˆ ˆ ˆ M N β A p , − q π p = 0 q = − p p + 1 ( ) p ( ) N 2 1 − cos 2ˆ ∑ ∑ 4 ˆ r pq + 2 q β A pq = π p = 0 q = − p ( ) ˆ β Δ , N = argmin β ∈ 0, π ) ˆ M N β [ → van der Vaart: Asymptotic Statistics , 1998. 32
• Accuracy of ˆ β Δ , N Theorem 3.1 ( ) and be reflection invariant w.r.t. a unique axis Let f ∈ BV D β ∗ ∈ 0, π [ ) . Let N be so large that β ∗ is determined as the unique ( ) . Then zero of M N β , f ˆ β Δ , N → β ∗ (P) as Δ → 0 ( ) − M N β , f ( ) → 0 (P) M N β ˆ Proof : sup β ∈ 0, π [ ) 33
Theorem 3.2 ( ) β Δ , N = β ∗ + O P Δ ( ) → n 2 rate ← ˆ Proof : ( ) = ˆ ( ) ( ) ˆ ( ) + ˆ ( ) β ∗ ( ) ( ) ˆ β Δ , N − β ∗ 0 = ˆ β Δ , N β 1 1 2 • M N M N M N ( ) ( ) β ∗ ˆ 1 M N β Δ , N − β ∗ = − ˆ ( ) • ( ) ˆ β 2 M N 34
• From Theorem 3.1 : ( ) β ( ) β , f ( ) − M N ( ) → 0 (P) ˆ 2 2 sup β ∈ 0, π M N [ ) β → β ∗ (P) ( ) → M N ( ) ( ) β ∗ , f ( ) ˆ β 2 2 M N p + 1 p N ∑ ∑ ( ) 16 q 2 A pq f 2 ≠ 0 = π p = 0 q = − p 35
( ) ( ) β ∗ Δ − 1 ˆ ( ) ≈ − 1 M N • Δ − 1 ˆ β Δ , N − β ∗ ( ) ( ) β ∗ , f 2 M N p + 1 ( ) = p ( ) N 2 sin 2 ˆ ( ) β ∗ ∑ ∑ • ˆ 8 q ˆ r pq + 2 q β ∗ 1 M N A pq π p = 0 q = − p ( ) ( ) + q β ∗ = l π ← → r pq f p + 1 ( ) p ( ) N 2 sin 2 ˆ ∑ ∑ ( ) 8 q ˆ r pq − r pq f A pq = π p = 0 q = − p 36
p + 1 ( ) p ( ) N 2 sin 2 ˆ ∑ ∑ ( ) ( ) ≈ r pq − r pq f 8 q A pq f π p = 0 q = − p ( ) + O P Δ ( ) • ˆ A pq = A pq f ( ) = O P Δ ( ) r pq − r pq f • ˆ 37
Theorem 3.3 Let f be Lip(1). E ε 4 < ∞ . ⎛ ⎞ ( ) ⇒ N 0, 8 σ 2 Δ − 1 ˆ β Δ , N − β ∗ ⎜ ⎟ ( ) ( ) β ∗ , f 2 ⎝ ⎠ M N p + 1 ( ) = p N ( ) β ∗ , f ∑ ∑ ( ) 16 q 2 A pq f 2 2 M N π p = 0 q = − p 38
⇒ Confidence Interval for β ∗ ⎡ ⎤ ) 2 2 Δ ˆ σ ) 2 2 Δ ˆ σ ( ( β Δ , N − Φ − 1 1 − α β Δ , N + Φ − 1 1 − α ˆ ( ) , ˆ ⎢ ⎥ ( ) ⎢ ⎥ ˆ ˆ 2 2 M N M N ⎣ ⎦ p + 1 p N ( ) = ∑ ∑ 2 16 q 2 ˆ • ˆ 2 M N A pq π p = 0 q = − p { } 2 + Z i , j − Z i , j + 1 ( ) ( ) σ 2 = 1 ∑ 2 Z i , j − Z i + 1, j • ˆ ( ) 4 C Δ ( ) , x i + 1 , y j ( ) , x i , y j + 1 ( ) ∈ D x i , y j 39
Remark 1: f is not reflection symmetric β Δ , N → β = argmin β f − τ β f 2 ˆ 40
( ) for images invariant under { } Remark 2: Estimation d ∈ 2,3,4,.... rotations through an angle 2 π d ? 41
42
43
IV Testing for Image Symmetries Testing Rotational Symmetries d = 2 - testing image symmetry w.r.t. rotation through π ( ) = e 2 π iq / d A pq f ( ) → A pq r ( ) = e π iq A pq f ( ) A pq f d f 44
The orthogonal projection ∞ p + 1 2 = 1 − e 2 π iq / d 2 A pq f ∑ ∑ ( ) 2 f − r d f π p = 0 q ≤ p The test statistic (d=2) p + 1 N r 2 = ∑ ∑ 2 ˆ T N A pq π p = 0 q ≤ p p = odd 45
Theorem 4.1: A: Under H r 2 : r 2 f = f let N → ∞ , N 7 Δ → 0 , as Δ → 0 Then for p + 1 N r 2 = ∑ ∑ 2 ˆ T N A pq π p = 0 q ≤ p p = odd we have r 2 − σ 2 Δ 2 a N ( ) ( ) ( ) / 4 − N even T N ⎧ N N + 2 ⇒ N 0,2 σ 4 ( ) = ⎨ ( ) a N Δ 2 a N ( ) N + 3 ( ) / 4 − N odd N + 1 ⎩ 46
( ) , s ≥ 2 and let 2 f ≠ f let f ∈ C s D B: Under H r 2 : r N → ∞ , N 3/2 Δ γ − 1 → 0 , N 2 s + 1 Δ → ∞ as Δ → 0 Then we have r 2 − f − r 2 / 4 ( ) T N 2 f ⇒ N 0, σ 2 f − r 2 2 f Δ 47
Proof : • Under H r 2 : T N r 2 is a quadratic form of iid random variables (*de Jong: A CLT for generalized quadratic forms, Pr.Th.Related Fields , 1987*) • Under H r 2 : T N r 2 is dominated by a linear term 48
Similar results exist for • d = 4 - testing image symmetry w.r.t. rotation by π / 2 ( ) = g ρ ( ) • d = ∞ - testing image radiality, i.e., f x , y • Testing image mirror symmetry • Joint hypothesis τ y , r 2 : r 2 f = f AND τ y f = f H τ y , r 2 : r 2 f ≠ f OR τ y f ≠ f H 49
Recommend
More recommend