3d dualities and Weyl group symmetry Luca Cassia Milano-Bicocca University Based on work with A. Amariti, arXiv:18XX.XXXXX Supersymmetric theories, dualities and deformations Bern, 16-18 July 2018
Introduction A good strategy to derive new dualities is to take limits and deformations of existing ones It is especially interesting to find relations between dualities in different dimensions Rich interplay between duality and symmetries 2/18
Outline Review of USp(2N) dualities and E7 surprise Circle reduction of 4d dualities Monopole superpotentials and zero modes Real mass and Higgs flows New webs of USp(2N)/U(N) dualities 3/18
USp(2N) theories in 4d The theory we consider has: โข ๐๐๐(2๐) gauge group โข 8 fundamental flavors ๐ โข 1 (totally) antisymmetric field ๐ต โข superpotential ๐ = 0 The global symmetry is ๐๐(8) ร ๐(1) ร ๐(1) ๐ The theory has a large number of duals [Spiridonov,Vartanov] The rank 1 case was studied by [Gaiotto,Dimofte] Higher rank generalizations are due to [Razamat,Zafrir] 4/18
1 4 ๐(1) ๐ ๐๐(4) ๐๐(4) ๐๐๐(2๐) ๐ (๐) 1 1 0 ฬ ๐ 4 1 ๐ (๐) 0 0 1 6 ๐(2๐ โ 1) โ 1 ๐ ๐(1) ๐ 2๐ โ1 ๐ 6 1 1 ๐ (๐) 0 0 1 1 ๐(2๐ โ 1) โ 1 1/2 ฬ โ1 4 1 2๐ ๐ 1/2 1 1 4 1/2 4 1 0 1/2 8 ฬ 2๐ ๐ ๐(1) ๐ ๐๐(8) ๐๐๐(2๐) 1 1 ๐(2๐ โ 1) โ 1 ๐(2๐ โ 1) โ 1 ๐ต 1/2 8 2๐ ๐ ๐(1) ๐ ๐๐(8) ๐๐๐(2๐) ๐ 1 1 ๐(1) ๐ 2๐ ๐ 1/2 1 1 4 ฬ 2๐ ๐ ๐(1) ๐ 0 ๐๐(4) ๐๐(4) ๐๐๐(2๐) 1 2 1 28 1 ๐ (๐) โ2 USp(2N) dualities in 4d There are 4 sets of dual phases: ๐ ๐ต = 0 ๐ ๐ถ = ๐ (๐) ๐๐๐ ๐ [Intriligator,Pouliot] ๐ ๐ท = ๐ (๐) ๐๐๐ ๐ [Seiberg] ๐ ๐ธ = ๐ (๐) ๐๐๐ ๐ + ๐ (๐) ๐๐๐ ๐ [Csaki,Schmaltz,Skiba,Terning] 5/18
E7 ร U(1) surprise [Razamat,Zafrir] In total there are 1+1+35+35=72 dual phases For even rank they can be deformed so that they become self dual self duality โ discrete global symmetry Global symmetry enhances from ๐๐(8) ร ๐(1) to ๐น 7 ร ๐(1) The enhancement can be checked by expanding the superconformal index and rearranging the gauge invariant operators into irreps. of ๐น 7 6/18
|๐(๐น 7 )| Weyl group symmetry The Weyl group of ๐น 7 has an action on the fugacities with stabilizer the group of permutations of the 8 flavors |๐(๐ต 7 )| = 72 The dualities are implemented by reflections in the roots of ๐น 7 which are not in ๐๐(8) 133 = 63 โ 70 7/18
๐ = ๐๐ Reduction of duality to 3d We can put the theories on โ 3 ร ๐ 1 and take the limit ๐ โ 0 but the naive dimensional reduction does not give rise to a 3d duality! To correctly reduce the 4d duality one has to modify the limit procedure in the following ways: [Aharony,Razamat,Seiberg,Willett] โข the scalar fields coming from the holonomy of the gauge field around the circle are periodic โ compact Coulomb branch โข 4d instantons can generate a non-perturbative superpotential on the Coulomb branch of the effective 3d theories [Seiberg,Witten] 8/18
Monopole superpotentials โข This superpotential arises due to the presence of 2 zero modes of the Dirac operator in a 4d instanton background (KK monopole) โข It can be seen as a contribution coming from a fundamental monopole associated to the affine root of the algebra โข Global symmetries can be anomalous in 4d and dualities hold only when anomaly cancellation is satisfied โข Requiring that the monopole superpotential has the correct charges imposes the same constraints as the 4d anomaly cancellation 9/18
Counting of zero modes The number of zero modes associated to every matter field can be computed using the Callias index of the Dirac operator on โ 3 ร ๐ 1 in a KK monopole background: โข the adjoint carries 2 zero modes for each unit of magnetic flux โข the fundamental and antisymmetric have no zero modes The KK monopole superpotential is indeed generated and the duality is preserved! Remark: the theory is only effectively 3-dimensional 10/18
2(๐ โ 1)๐ + 8 2 (๐ + 1/๐) ๐ =1 โ 3d partition functions The duality can be checked at the level of the 3d partition function on ๐ 3 ๐ by reducing the 4d index [Rains] The partition function is a hyperbolic hypergeometric integral which depends on the complex variables: โข ๐ โ โ 8 , mass parameters of the fundamentals โข ๐ โ โ , mass parameter of the antisymmetric subject to the balancing condition : ๐ = ๐ ๐ ๐ = 4๐ {๐๐(๐), ๐๐(๐)} = real masses, {๐ฝ๐(๐), ๐ฝ๐(๐)} = R-charges 11/18
๐; ๐) ฬ ๐ =5 โ ๐ ๐๐๐ (๐; ๐) = ๐โ1 โ ๐=0 โ 1โค๐ <๐กโค4 8 ร โ 5โค๐ <๐กโค8 2๐ = ๐ = 1, .., 4 Integral identities Several mathematical identities are known for this type of hypergeometric integrals in the literature: [van de Bult] ฮ โ (๐๐ + ๐ ๐ + ๐ ๐ก ) ฮ โ (๐๐ + ๐ ๐ + ๐ ๐ก ) ๐ ๐๐๐ ( ฬ ๐ = { ๐ ๐ + ๐ ๐ = 5, .., 8 } ๐ ๐ โ 2๐ + (๐ โ 1)๐ ๐ ๐ โ ๐ By combining this master equation with permutations of the mass parameters we obtain identities between all the dual phases. 12/18
๐=0 โ ๐; ๐) ๐ ๐ ) ๐ ๐๐๐ ( ฬ ๐ =1 โ 6 1โค๐ <๐กโค4 โ ๐ ๐๐๐ (๐; ๐) = ๐โ1 Real mass flow The previous identity is compatible with the assignment of masses as: ๐ 7 โ ๐ 7 + ๐ ๐ 8 โ ๐ 8 โ ๐ After taking the ๐ โ โ limit we can use the balancing condition to remove the dependence on ๐ 7,8 so that the remaining parameters are unconstrained (vanishing monopole superpotential) ฮ โ (๐๐ + ๐ ๐ + ๐ ๐ก )ฮ โ (๐๐ + ๐ 5 + ๐ 6 ) ร ฮ โ (4๐ โ (2๐ โ 2 + ๐)๐ โ The hypergeometric integrals have ๐(๐ธ 6 ) symmetry. 13/18
|๐(๐ธ 6 )| Breaking of Weyl group symmetry The choice of real masses selects the direction ๐ค = (0, 0, 0, 0, 0, 0, 1, โ1) in the root space of ๐น 7 Reflections in the roots orthogonal to ๐ค generate a parabolic subgroup of the Weyl group of ๐น 7 which acts as the unbroken symmetry group of the partition function. Accordingly, the number of dual phases is: |๐(๐ต 5 )| = 32 14/18
ฬ ๐ Higgs flow and new USp(2N)/U(N) dualities We can also combine a mass flow in the direction (1, 1, 1, 1, โ1, โ1, โ1, โ1) with an Higgs flow ๐ ๐ โ ๐ ๐ + ๐ The shift breaks ๐๐๐(2๐) with 8 fund. and 1 antisymm. into ๐(๐) with 4 flavors and 1 adj. + superpotential ๐ = ๐ + Remark: Naively this superpotential for ๐(๐) + adjoint ๏ฟฝ should not be generated, but the UV completion of the effective theory is ๐๐๐(2๐) with antisymm. โข partition function has ๐(๐ธ 6 ) symmetry with |๐(๐ธ 6 )| |๐(๐ต 3 ) 2 | = 40 dual phases. โข The two types of flow can be mapped by ๐(๐น 7 ) : โ duality between the ๐๐๐(2๐) and ๐(๐) theories. 15/18
General scheme 72 USp(2n),F=8,k=0 E 7 D 32 USp(2n),F=6,k=0 40 U(n),F=(4,4),k=0 6 A 6 USp(2n),F=5,k=1 20 U(n),F=(3,3),k=0 5 A A 2 USp(2n),F=4,k=2 4 U(n),F=(3,2),k=1/2 12 U(n),F=(2,2),k=0 3 1 A 1 USp(2n),F=3,k=3 3 U(n),F=(2,1),k=1/2 2 1 U(n),F=(3,1),k=1 A 1 U(n),F=(3,0),k=3/2 3 U(n),F=(2,0),k=0 2 A 2 U(n),F=(1,1),k=1 1 USp(2n),F=2,k=4 1 U(n),F=(2,0),k=1 1 1 USp(2n),F=1,k=5 1 U(n),F=(1,0),k=3/2 1 USp(2n),F=0,k=6 1 U(n),F=(0,0),k=2 16/18
Conclusions โข we found the 3d reduction of dualities of ๐๐๐(2๐) theories with 8 flavors and 1 antisymmetric โข by mass + Higgs flows we obtain several new ๐๐๐(2๐)/๐(๐) dualities โข many of these theories exhibit global symmetry enhancement โข the action of the ๐น 7 Weyl group is manifest on the real masses and governs both the reduction of the dualities by flows and also the symmetry enhancements 17/18
Outlook โข brane realization โข other flows leading to different parabolic subgroups โข theories with power law superpotential for ๐ต โข confining theories with 6 fundamentals โข Hilbert series and superconformal/twisted index 18/18
Recommend
More recommend