The puzzle of 2HDM HDM-based and dark matter SUSY-inspired models Assembling the pieces Hamburg, 29.october.18 Arely Cortes-Gonzalez On behalf of ATLAS and CMS
Sc Scope ope Theoretical Framework Effective Field Theories Simplified models Less simplified models UV complete models, typically not restricted by Effective field theories (EFT) of Natural solution to EFT Higgs measurements. DM interaction with WIMPs. validity. Simplified Effective Lagrangian approach models considers the A much larger parameter with parameters: M* and m DM . production of a mediator space affecting the Different operators can be particle. kinematics, cross sections, considered. E.g. for a s-channel couplings, etc. Theory only valid if M* is mediator we can have: Much richer much larger than the energy m med , m DM , g DM , g q . g l phenomenology! scale present in reaction. This is in fact a potential issue at the LHC. 2 Arely Cortes Gonzalez The puzzle of dark matter 29.10.18
Sc Scope ope Theoretical Framework Effective Field Theories Simplified models Less simplified models UV complete models, typically not restricted by Effective field theories (EFT) of Natural solution to EFT Higgs measurements. DM interaction with WIMPs. validity. Simplified Effective Lagrangian approach models considers the A much larger parameter with parameters: M* and m DM . production of a mediator space affecting the Different operators can be particle. kinematics, cross sections, considered. E.g. for a s-channel couplings, etc. Theory only valid if M* is mediator we can have: See talks today by Much richer much larger than the energy m med , m DM , g DM , g q . g l 2HDM -based and Stanislava Sevova phenomenology! scale present in reaction. SUSY -inspired models This is in fact a potential issue and Will Kalderon at the LHC. 3 Arely Cortes Gonzalez The puzzle of dark matter 29.10.18
2HDM HDM-bas ased ed model dels arXiv: 1402.7074 arXiv: 1507.00966 2HDM + Z’ Extension of type-II 2HDM in the alignment limit. o Z’ decays to a Higgs boson h and pseudoscalar A of a 2HDM (A à χχ ). o Assumes 2HDM for DM coupling. A couples to DM and complies with EW precision measurements. o o Parameters: gauge coupling g Z’ = 0.8, ratio of up- and down-type vacuum expectation values, tan β = 1, m χ = 100 GeV. o Charged Higgs bosons: m H± = 300 GeV (CMS: m H± = m A ). arXiv: 1507.00966 arXiv: 1507.00966 Kinematics independent Scan of tan β , g Z’ m A and m Z’ or m χ parameters. (if m χ < m A /2). 4 Arely Cortes Gonzalez The puzzle of dark matter 29.10.18
2HDM HDM-bas ased ed model dels arxiv:1701.07427 arXiv:1810.09420 2HDM + a Extension of type-II 2HDM in the alignment limit. o Pseudoscalar mediator a couples DM to SM and mixes with heavy pseudoscalar A of 2HDM. o Rich phenomenology of E T miss +X signatures (complementary sensitivity). o Additional sensitivity from resonance searches (A/H(bb, ττ , tt)). 14 parameters free parameters o Alignment limit: SM Higgs is the lighter of CP-even o m A : mass of heavy states h . pseudoscalar A o sin( β - α ) = 1, m h = 125 GeV, ν = 246 GeV o Fix quartic coupling λ 3 = 3 chosen to ensure stability o m a : mass of mediator a of Higgs potential. o sin θ : mixing angle o λ 3 = λ P1 = λ P2 = 3 between a and A o m A = m H = m H± o tanß : ratio of VEVs of o Fix DM mass and coupling (between a and DM). the two Higgs doublets. o m χ = 10 GeV, y χ = 1. 5 Arely Cortes Gonzalez The puzzle of dark matter 29.10.18
2HDM HDM-bas ased ed model dels arxiv:1701.07427 arXiv:1810.09420 Interesting kinematic dependence on model parameter 2HDM + a suggests multiple parameters scans are of interest. mono - Higgs, M a = 200 GeV mono - Higgs, M A = 700 GeV mono - Higgs, M A , a = { 700, 400 } GeV 0.014 0.5 M A = 400 GeV M a = 300 GeV 0.012 0.015 sin θ = 0.15 miss [ GeV - 1 ] miss [ GeV - 1 ] M A = 700 GeV 0.4 M a = 400 GeV miss [ fb GeV - 1 ] sin θ = 0.35 0.010 M A = 1000 GeV M a = 500 GeV sin θ = 0.7 0.010 0.008 0.3 1 / σ d σ / dE T 1 / σ d σ / dE T 0.006 0.2 d σ / dE T 0.005 0.004 0.1 0.002 0.000 0.000 0 100 200 300 400 500 600 0 100 200 300 400 0.0 0 50 100 150 200 250 300 miss [ GeV ] E T miss [ GeV ] E T miss [ GeV ] E T mono - Z, M a = 200 GeV mono - Z, M H = 700 GeV mono - Z , M H , a = { 700, 400 } GeV 0.012 0.05 miss ) [ GeV - 1 ] M H = 400 GeV sin θ = 0.15 M a = 300 GeV 0.020 0.010 1 / σ d σ / dp T , Z [ GeV - 1 ] 0.04 d σ / dp T , Z [ fb GeV - 1 ] sin θ = 0.35 M H = 700 GeV M a = 400 GeV 0.008 0.015 sin θ = 0.7 M a = 500 GeV M H = 1000 GeV 0.03 1 / σ d σ / dM T ( l + l - , E T 0.006 0.010 0.02 0.004 0.005 0.01 0.002 0.000 0.000 0.00 0 100 200 300 400 500 600 100 200 300 400 500 600 700 0 50 100 150 200 250 300 6 p T , Z [ GeV ] miss ) [ GeV ] M T ( l + l - , E T p T , Z [ GeV ] Arely Cortes Gonzalez The puzzle of dark matter 29.10.18
An Analyses ATLAS-CONF-2018-039 CMS-PAS-EXO-16-050 JHEP 09 (2018) 046 Results recently updated with 2015,2016 and 2017 data. E T miss +H(bb, γγ , ττ ) 60 Events / bin H(bb) Events / 20 GeV H(bb) 7 10 Data Data ATLAS Preliminary ATLAS Preliminary Z+jets SM Vh -1 -1 s = 13 TeV , 79.8 fb s = 13 TeV , 79.8 fb t t + single top 50 Diboson 6 10 SR : 0 lepton W+jets t t + single top SR (Merged) : 0 lepton 2 b-tags Diboson Z+jets Resolved and Merged analyses miss E > 500 GeV T 5 SM Vh W+jets 10 40 2 b-tags Background Uncertainty Background Uncertainty defined. Combined statistically. Pre-fit Background Pre-fit Background 4 10 mono-h Z’-2HDM mono-h Z’-2HDM 30 m = 1400 GeV, m = 600 GeV m = 1400 GeV, m = 600 GeV Z’ Z’ A A σ = 3.75 fb σ = 3.75 fb 3 Signal 10 Signal y b k s a l 20 t S T Y e e S d 2 n 10 a w d o a G p p i l i P h 10 o . i l l r t o P 10 a D i l i 0 0 0 1 0 0 Data/SM 1.5 Data/SM 1.2 1 1 0.5 0.8 50 100 150 200 250 200 300 400 500 600 700 800 m [GeV] miss E [GeV] J T -1 -1 -1 H(bb) 35.9 fb (13 TeV) 35.9 fb 35.9 fb (13 TeV) (13 TeV) Events / 2 GeV Events / GeV 5 10 16 Observed Z → τ τ CMS CMS CMS Observed τ τ Diboson W + jets/multijet Nonres. background pdf h h 14 4 10 Z +jets h /WW → ν ν → τ τ DM + h( ) γ γ ± 1 s.d. t t Bkg. uncertainty miss p > 130 GeV 2 s.d. 12 ± 3 10 T Z'-2HDM, m =1200 GeV, m =300 GeV Z' A SM h contribution Baryonic Z', m =100 GeV, m =1 GeV Z' DM 10 H( ττ ) Total background pdf 2 10 H( γγ ) 8 10 6 1 4 2 Obs./MC 1.5 1 0 110 120 130 140 150 160 170 180 7 0.5 m [GeV] γ γ 0 50 100 150 200 250 300 350 400 450 500 tot M [GeV] T
An Analyses arXiv:1807.11471 PLB 776 (2017) 318 E T miss + Z(qq’,ll) Events / GeV Events / GeV Data 6 Data 10 4 10 ATLAS ATLAS Z+jets Z+jets W+jets W+jets 5 -1 -1 10 s = 13 TeV , 36.1 fb s = 13 TeV , 36.1 fb 3 t t + single top quark t t + single top quark 10 Diboson Diboson 4 SR: merged topology SR: resolved topology Multijet 10 Multijet 2 10 Background Uncertainty Background Uncertainty 0 leptons, 2 b-tags 0 leptons, 2 b-tags Pre-fit Background 3 Pre-fit Background 10 10 H inv (B = 100%) H inv (B = 100%) → → 2 H inv H inv → 10 → Vector Mediator Model Vector Mediator Model 1 Resolved and Merged 10 m = 600 GeV, m = 1 GeV m = 600 GeV, m = 1 GeV Z’ Z’ χ χ 1 10 − 1 analyses defined. 2 10 − 1 10 − 3 10 − 2 10 − 4 3 10 − 10 − 5 4 − 10 10 − Data/SM Data/SM 1.5 1.5 1 1 0.5 0.5 200 400 600 800 1000 1200 1400 400 600 800 1000 1200 1400 miss miss E [GeV] E [GeV] T T [Events/GeV] [Events/GeV] 3 3 10 10 ATLAS Preliminary ATLAS Preliminary Data Non-resonant ll Data Non-resonant ll -1 -1 s = 13 TeV, 36.1 fb s = 13 TeV, 36.1 fb ZZ Z+jets ZZ Z+jets 2 2 10 10 miss WZ Others miss WZ Others Z(ee)+E Z( )+E µ µ miss miss T T Stat.+Syst. Stat.+Syst. T T dN/dE dN/dE E T miss + 2 leptons 10 10 2HDM+a (m =600 GeV, m =250 GeV) 2HDM+a (m =600 GeV, m =250 GeV) H a H a AV (m =500 GeV, m =100 GeV) AV (m =500 GeV, m =100 GeV) Z χ Z χ selection, final limits from A A 1 1 binned fit to E T miss . − 1 − 1 10 10 10 − 2 10 − 2 − 3 − 3 10 10 y b l k t a T S Y e S e 1.6 1.6 n a L e 1.4 1.4 c Data / SM Data / SM M l a a y K 1.2 1.2 1 1 0.8 0.8 0.6 0.6 100 200 300 400 500 600 700 1000 100 200 300 400 500 600 700 1000 8 miss miss E [GeV] E [GeV] T T Arely Cortes Gonzalez The puzzle of dark matter 29.10.18
Recommend
More recommend