Effects of Fe Dosage on Nursery Feed Efficiency (d 0 to 42) SEM = 0.036 1.90 Quadratic, P = 0.007 1.80 1.75 200 vs. 200 + 100, P = 0.803 1.70 1.61 1.59 1.58 F/G 1.57 1.60 1.54 1.50 1.40 1.30 0 50 100 150 200 200 + 100 Fe, mg Williams et al ., 2018
Effects of Fe Dosage on Hemoglobin (d 0 to 63) Trt x Day, P = 0.001 a Quadratic, P < 0.05 *SEM ranged from 0.22 to 0.24 b Linear, P < 0.05 **100 mg of Fe given at d 11 c 200 vs. 200 + 100, P < 0.05 ** Fe, mg 0 50 100 150 200 200 + 100 15 12 Hb, g/dl 9 6 3 0 a a,c b,c 3 11 21 35 63 Day Williams et al ., 2018
Timing of 200 mg Injectable Fe on Suckling Piglet Weaning Weight SEM = 0.36 Quadratic, P = 0.113 15.0 0 vs. Others , P = 0.001 13.7 14.0 13.6 13.0 13.0 12.8 13.0 BW, lb 12.0 12.0 11.0 10.0 0 2 4 6 8 10 Age, d Williams et al ., 2018
Timing of 200 mg of Injectable Fe on Nursery Average Daily Gain (d 21 to 80) SEM = 0.030 1.20 0 vs. Others , P = 0.003 1.14 1.13 1.11 1.11 1.10 ADG, lb 1.06 1.01 1.00 0.90 0 2 4 6 8 10 Age, d Williams et al ., 2018
Timing of 200 mg Injectable Fe on Nursery Ending BW (d 21 to 80) SEM = 1.62 Quadratic, P = 0.013 88.0 0 vs. Others , P = 0.001 81.8 81.1 80.1 81.0 78.9 76.1 BW, lb 72.6 74.0 67.0 60.0 0 2 4 6 8 10 Age, d Williams et al ., 2018
Timing of 200 mg Injectable Fe on Hemoglobin Trt x Day, P = 0.001 a Quadratic, P < 0.05 (d 0 to 35) b Linear, P < 0.05 c 0 vs. Others, P < 0.05 *SEM ranged from 0.21 to 0.22 15 0 2 4 6 8 10 Age, d 12 Hb, g/dL 9 6 3 0 a,c b,c c 2 12 21 35 Day Williams et al ., 2018
Overview of Feed Science and Nutrition Research • Phytase Stability • Phosphorus Requirement • Ca:P Ratio
Pellet Mill Processing Parameters • 245 mm × 1397 mm Wenger twin staff pre ‐ conditioner • 30 HP CPM 1012 ‐ 2 HD Master Model • 4.8 mm × 50.8 mm pellet die; L:D = 10.67 • 4.5 kg/min production rate (30% of rated throughput) Truelock et al., 2018
Hot Pellet Temperature Hot Pellet Temperature, ° F Interaction, P = 0.11 215 Source, P = 0.39 Temp., Quadratic, P = 0.03 212 211 211 Hot Pellet Temperature, ˚ F 210 210 208 208 208 207 205 A 205 203 B 202 201 C 200 D 195 180 190 200 Conditioning Temperature, ˚ F Truelock et al., 2018
Phytase Stability, % 40 Interaction, P < 0.01 33.7 Source, P < 0.01 35 Temp., Quadratic, P < 0.01 Phytase Stability, % 30 24.2 25 20.7 17.5 A 16.3 20 13.0 B 11.8 11.2 15 11.5 9.7 9.0 8.3 C 10 D 5 0 Condition: 180 190 200 Hot Pellet: 203 208 211 Temperature, ˚ F Truelock et al., 2018
Hot Pellet Temperature, °F 240 Hot Pellet Temperature, °F 220 209 208 201 197 192 200 189 180 160 140 120 100 170 180 190 170 180 190 50% Production Rate 100% Production Rate Truelock et al., 2018
Conditioned Mash Phytase Stability, % 140 115 120 110 Phytase Stability, % 105 100 82 81 80 60 43 40 20 0 170 180 190 170 180 190 50% Production Rate 100% Production Rate Truelock et al., 2018
Pellet Phytase Stability, % 100 92 Phytase Stability, % 80 60 45 40 40 18 14 20 6 0 Condition: 170 180 190 170 180 190 Hot Pellet: 192 201 209 189 197 210 50% Production Rate 100% Production Rate Truelock et al., 2018
Pellet Mill Comparison Model 1012 ‐ 2 3016 ‐ 4 7936 ‐ 12 Detail L:D ratio 8 12 8 12 8 12 Die work area (inch 2 ) 85 85 226 226 1379 1379 Effective length (inch) 1.50 2.25 1.50 2.25 1.50 2.25 Production rate (ton/hr) 1 1 5 5 60 60 Holes per Die 1,223 1,223 3,262 3,262 19,900 19,900 Volumn per die (inch3) 270 405 720 1,080 4,394 6,590 Saensukjaroenphon et al., 2018
Die Retention Time, sec 20 L:D Ratio 16.1 8 12 16 Retention time, sec 10.7 12 8.6 8 5.7 4.4 2.9 4 0 1 ton 5 ton 60 ton Saensukjaroenphon et al., 2018
Effects of phytase source and storage time on phytase activity (85 F, 75% humidity) Ratio of average AOAC analyzed values to calculated values. Pure HP Pure AP Pure QB VTM HP VTM AP VTM QB 1.5 1.2 Linear time, P< 0.001 AOAC Ratio 0.9 0.6 0.3 0.0 0 30 60 90 Day of storage Vier et al.,2018
Effects of phytase source and storage time (85 F, 75% humidity) Bone ash, 25 to 50 lb pigs 50 SEM = 0.031 46.9 Overall, P< 0.001 47 a 44.6 44.1 43.3 44 42.8 42.8 a,b b Bone ash, % 41.3 b,c b,c b,c 41 c 38.4 38 d 35 NC PC HP AP QB HP AP QB PURE VTM Vier et al.,2018
STTD P requirement of 13 ‐ to 28 ‐ lb pigs fed diets with or without phytase Phytase: P < 0.01 No phytase: quad, P < 0.01 No phytase 2,000 FYT Phytase W/ phytase: quad, P = 0.03 0.7 0.67 0.66 0.65 0.65 0.64 0.63 0.59 0.59 ADG, lb 0.58 0.58 0.58 0.6 0.53 0.5 0.4 80% 90% 100% 110% 125% 140% 155% 170% STTD P, as % of NRC No phytase: 117% of NRC (99% performance at 106%) W/ phytase: 138% of NRC (99% performance at 122%) Wu et al., 2018
STTD P requirement of 13 ‐ to 28 ‐ lb pigs fed diets with or without phytase Phytase: P < 0.01 No phytase: linear, P < 0.01 No phytase 2,000 FYT Phytase quad, P = 0.06 W/ phytase: linear, P < 0.01 1.42 quad, P = 0.07 1.40 1.38 1.34 1.35 1.33 1.32 1.31 1.30 F/G 1.29 1.30 1.27 1.27 1.27 1.26 1.25 1.20 1.15 80% 90% 100% 110% 125% 140% 155% 170% STTD P, as % of NRC Wu et al., 2018
STTD P for nursery pigs fed diets with phytase ADG, 25 to 50 lb Phytase= 1000FYT of HiPhos 1.40 SEM = 0.019 Linear, P = 0.001 Quadratic, P = 0.008 1.30 ADG, lb 1.21 1.21 1.20 1.20 1.19 1.20 1.15 1.14 1.10 1.00 STTD P, % 0.30 0.33 0.38 0.43 0.48 0.53 0.58 % of NRC 90 100 115 130 145 160 175 Vier et al.,2018
Effects of analyzed Ca:P ratio on pig performance ADG, 58 to 281 lb 1050 2.31 Pen QP: 1.38 Ca:P ratio QP 95% CI 2.20 1000 ADG, g ADG, lb 2.09 950 1.98 900 1.87 850 0.75:1 1.00:1 1.25:1 1.50:1 1.75:1 2.00:1 0.75:1 1.00:1 1.25:1 1.50:1 1.75:1 2.00:1 Total Ca:P ratio Analyzed total Ca:P ratio Vier et al.,2018
Effects of analyzed Ca:P ratio on pig performance HCW, 58 to 281 lb SEM = 1.175 220 Linear, P= 0.298 Quadratic, P= 0.003 215 212.1 211.4 HCW, lb 208.6 210 208.1 205.0 204.3 205 200 0.75:1 1.00:1 1.25:1 1.50:1 1.75:1 2.00:1 Analyzed total Ca:P ratio Vier et al.,2018
Effects of analyzed Ca:P ratio on pig performance HCW, 57 to 279 lb SEM = 2.99 220 Linear, P = 0.007 Quadratic, P = 0.015 208.4 210 206.7 206.4 HCW, lb 204.9 199.6 200 190 0.75:1 1.00:1 1.25:1 1.50:1 1.75:1 2.00:1 Analyzed Ca:P ratio Vier et al.,2018 Phytase= 1000FYT of HiPhos
Amino acid research update • The “next” limiting amino acid: histidine • Phase feeding – 2017 Swine Day: could reduce phases to 2 phases in grow ‐ finish if formulate lysine for max performance • Diets with high corn levels or corn ‐ byproducts have high leucine:lysine ratios. – Have lower feed intake and lower ADG. – Do these high ratios influence requirement to other amino acids?
SID His:Lys requirement for nursery pigs • Practical nursery diets are formulated with increasing amounts of feed ‐ grade amino acids – Currently added: Lys, Thr, Met, Trp, and Val – Soon: Isoleucine • Histidine could be the sixth limiting amino acid in many of these diets – NRC (2012) suggests: 34% SID His:Lys • Therefore, the SID His:Lys could dictate the maximum inclusion of other feed ‐ grade amino acids Cemin et al., 2018
SID His:Lys requirement for ADG Breakpoint: 31.0% SID His:Lys 95% CI: [29.7, 32.3%] Cemin et al., 2018
SID His:Lys requirement for feed efficiency Breakpoint: 28.6% SID His:Lys 95% CI: [29.7, 32.3%] Cemin et al., 2018
Phase ‐ feeding programs for grow ‐ finish pigs Simplification of phase ‐ feeding: 6.5 6.5 2 ‐ PHASE 4 ‐ PHASE 6.0 6.0 SID Lys:NE, g/Mcal SID Lys:NE, g/Mcal 5.5 5.5 5.0 5.0 4.5 4.5 = 4.0 4.0 3.5 3.5 3.0 3.0 2.5 2.5 2.0 2.0 20 60 100 140 180 220 260 20 60 100 140 180 220 260 BW, lb BW, lb Menegat et al., 2017 161
6.5 6.5 1 ‐ PHASE 2 ‐ PHASE 6.0 6.0 SID Lys:NE, g/Mcal SID Lys:NE, g/Mcal 5.5 5.5 5.0 5.0 4.5 4.5 4.0 4.0 3.5 3.5 3.0 3.0 2.5 2.5 2.0 2.0 20 60 100 140 180 220 260 20 60 100 140 180 220 260 BW, lb BW, lb 6.5 6.5 3 ‐ PHASE 4 ‐ PHASE 6.0 6.0 SID Lys:NE, g/Mcal SID Lys:NE, g/Mcal 5.5 5.5 5.0 5.0 4.5 4.5 4.0 4.0 3.5 3.5 3.0 3.0 2.5 2.5 2.0 2.0 20 60 100 140 180 220 260 20 60 100 140 180 220 260 BW, lb BW, lb
Effect of phase ‐ feeding program on HCW Lysine at requirement for maximum performance SEM = 2.31 ab P = 0.014 Hot Carcass Weight 225 220 a a 215.7 215.3 ab HCW, lb 212.6 215 b 209.7 210 205 200 195 1 ‐ PHASE 2 ‐ PHASE 3 ‐ PHASE 4 ‐ PHASE Menegat et al., 2018 169
Effect of phase ‐ feeding program on IOFC Lysine at requirement for maximum performance SEM = 0.83 P = 0.601 Income over feed cost $64 60.58 60.36 $61 IOFC, $/pig 59.79 59.34 $58 $55 $52 1 ‐ PHASE 2 ‐ PHASE 3 ‐ PHASE 4 ‐ PHASE Menegat et al., 2018 170
6.5 6.5 172 1 ‐ PHASE 2 ‐ PHASE 6.0 6.0 SID Lys:NE, g/Mcal SID Lys:NE, g/Mcal 5.5 5.5 5.0 5.0 4.5 4.5 4.0 4.0 3.5 3.5 3.0 3.0 2.5 2.5 2.0 2.0 20 60 100 140 180 220 260 20 60 100 140 180 220 260 BW, lb BW, lb 6.5 6.5 3 ‐ PHASE 4 ‐ PHASE 6.0 6.0 SID Lys:NE, g/Mcal SID Lys:NE, g/Mcal 5.5 5.5 5.0 5.0 4.5 4.5 4.0 4.0 3.5 3.5 3.0 3.0 2.5 2.5 2.0 2.0 20 60 100 140 180 220 260 20 60 100 140 180 220 260 BW, lb BW, lb
Exp. 3 Effect of phase feeding program on abc P < 0.05 Average daily gain by phase within phase SEM = 1 ‐ PHASE 2 ‐ PHASE 3 ‐ PHASE 4 ‐ PHASE Ph 1: 0.011 Ph 2: 0.013 2.40 Ph 3: 0.015 2.20 2.19 2.17 Ph 4: 0.011 2.12 2.11 2.10 2.10 2.20 2.09 2.02 2.01 1.99 1.98 ADG, lb 2.00 1.71 1.80 1.69 b a ab a a b b ab 1.58 1.60 1.43 1.40 c b a a 1.20 1.00 PHASE 1 PHASE 2 PHASE 3 PHASE 4 SID Lys, % 0.79 0.91 1.07 1.07 0.79 0.91 0.85 0.91 0.79 0.91 0.85 0.79 0.79 0.72 0.72 0.72 Menegat et al., 2018
Effect of phase ‐ feeding program on ADG Lysine at requirement for feed cost/lb of gain SEM = 0.02 ab P = 0.009 Overall, d 0 to 119 2.05 a 1.98 2.00 ab 1.96 ab ADG, lb 1.94 1.95 b 1.90 1.90 1.85 1.80 1.75 1 ‐ PHASE 2 ‐ PHASE 3 ‐ PHASE 4 ‐ PHASE Menegat et al., 2018 174
Effect of phase ‐ feeding program on F/G Lysine at requirement for feed cost/lb of gain SEM = 0.01 ab P < 0.001 Overall, d 0 to 119 2.8 2.7 a 2.66 2.7 b b 2.60 2.60 F/G 2.6 c 2.55 2.6 2.5 2.5 2.4 1 ‐ PHASE 2 ‐ PHASE 3 ‐ PHASE 4 ‐ PHASE Menegat et al., 2018 176
Effect of phase ‐ feeding program on HCW Lysine at requirement for feed cost/lb of gain SEM = 1.61 ab P = 0.005 Hot Carcass Weight 225 a 220 217.4 ab HCW, lb 215.3 ab 213.8 215 b 210.4 210 205 200 1 ‐ PHASE 2 ‐ PHASE 3 ‐ PHASE 4 ‐ PHASE Menegat et al., 2018 178
Effect of phase ‐ feeding program on IOFC Lysine at requirement for feed cost/lb of gain SEM = 0.69 ab P = 0.018 Income over feed cost $70 a 67.65 $68 IOFC, $/pig ab 65.82 ab $66 65.04 b 64.56 $64 $62 $60 1 ‐ PHASE 2 ‐ PHASE 3 ‐ PHASE 4 ‐ PHASE Menegat et al., 2018 179
6.5 6.5 2 ‐ PHASE 4 ‐ PHASE 6.0 6.0 SID Lys:NE, g/Mcal SID Lys:NE, g/Mcal 5.5 5.5 5.0 5.0 4.5 4.5 = 4.0 4.0 3.5 3.5 3.0 3.0 2.5 2.5 2.0 2.0 20 60 100 140 180 220 260 20 60 100 140 180 220 260 BW, lb BW, lb 6.5 6.5 2 ‐ PHASE 4 ‐ PHASE 6.0 6.0 SID Lys:NE, g/Mcal SID Lys:NE, g/Mcal 5.5 5.5 5.0 5.0 ≠ 4.5 4.5 4.0 4.0 3.5 3.5 3.0 3.0 2.5 2.5 2.0 2.0 20 60 100 140 180 220 260 20 60 100 140 180 220 260 BW, lb BW, lb
Effects of HP DDG on nursery pig performance BW range = 25 to 48 lb Linear, P = 0.001 1.3 SEM = 0.027 1.21 1.18 1.2 ADG, lb 1.09 1.08 1.1 1.06 1.0 0.9 0% 10% 20% 30% 40% HP DDG Cemin et al., 2018
Effects of HP DDG on nursery pig performance BW range = 25 to 48 lb Linear, P = 0.001 2.0 SEM = 0.040 1.89 1.83 1.8 ADFI, lb 1.71 1.66 1.64 1.6 1.4 0% 10% 20% 30% 40% HP DDG Cemin et al., 2018
Effects of HP DDG on nursery pig performance BW range = 25 to 48 lb Quadratic, P = 0.051 1.7 SEM = 0.017 1.58 1.57 1.55 1.55 F/G 1.6 1.52 1.5 0% 10% 20% 30% 40% HP DDG Cemin et al., 2018
High protein DDGS • 97% of productive energy of corn • Linear reduction in ADG and ADFI. Why? • Leucine? – Meta analysis by Cemin (2019) ADG, g = – 574.08 + 0.9652 average BW (kg) + 1.1977 Leu:Lys + 21.1981 Ile:Lys – 0.1530 Ile:Lys Ile:Lys + 10.7388 (Ile+Val):Leu – 0.0394 (Ile+Val):Leu (Ile+Val):Leu – 0.5498 Ile:Trp Cemin et al., 2019
Predicting performance of pigs fed high corn byproduct diets Cemin et al., 2019
Mycotoxins in 2018 Kansas corn crop • Fumonisin toxicity – Pigs • Sample 1: B 1 = 753 ppm; B 2 = 223 ppm; B 3 = 105 ppm • Sample 2: B 1 = 523 ppm; B 2 = 137 ppm; B 3 = 69 ppm – Horses • Desired fumonisin levels – < 10 ppm; concern between 5 and 10 ppm – If concerned, consider cleaning corn, remove dust & test • Toxicologist: Dr. Steve Ensley
Feed Mill Biosecurity
Pathogen Transmission Through Feed
K-State Outreach Associated with Pathogen Survival in Feed in 2018
Feed Biosecurity: Hurdles to Prevent Pathogen Transfer through Feed Exclude High Extend Active Mitigation Risk Ingredients Biosecurity Practices from Farms to Mills 257
Exclude High Risk Ingredients from Mills • High risk ingredients: Whole Soybean – Have the potential to have pathogen contamination • Source location, agricultural practices, transportation – Have characteristics to harbor Soybean virus that can survive at Meal infectious levels • Porcine ‐ based, vegetable carriers, natural protein, high surface area:mass ratio
Extend Biosecurity from Farms to Mills • Use receiving mats/funnels • Route vehicle traffic strategically • Use your own employees to unload • Start treating your mill like your farm: physical barriers, foot baths, zoning • In high stress times, sanitize trucks Pictures by Scott Dee and Jason Woodworth
Consider Surveillance to Find Weak Points in Biosecurity Compliance Enterobacteriaceae contamination rate Green: PDCoV > 35, SVA > 40 33.1 Orange: PDCoV < 35, SVA > 40 100% 33.3 Red: PDCoV < 35, SVA < 40 29.9 31.2 Data labels = PDCoV Ct 80% 28.8 60% n/d 34.7 n/d 35.3 n/d 34.1 35.3 40% 20% 0% Funded by SHIC
Active Mitigation: Your Last Hurdle • Quarantine via ASFV half ‐ life – Viral decay is time × temp dependent – ASFV is stable at cold temps, but is sensitive to heat – Currently no direct time × temp for ASFV – Extrapolation of other data Theoretical Time by Thermal Decay Curve for ASFV suggests ASFV risk will be 9 ASFV Decay, Log TCID 50 /d 8 lowered with higher temp 7 6 • Consider MCFA or 5 4 formaldehyde ‐ based products 54 F y = -0.0667x + 8 3 122 F y = -40x + 8 2 y = -102.86x + 8 133 F 1 y = -240x + 8 140 F 0 0 0.2 0.4 0.6 0.8 1 Days
Updated Feed Safety Resources www.ksuswine.org
Best strategy to prevent pathogen entry: 1. Exclude high risk ingredients from diets and mills 2. Extend biosecurity practices to feed mills – Monitor pathogen loads to identify potential entry risks 3. Proactively mitigate to further reduce risk www.ksuswine.org
RESEARCH UPDATE: Risk of African Swine Fever Virus (ASFV) Introduction and Transmission in Feed Megan C. Niederwerder, DVM, PhD Assistant Professor Department of Diagnostic Medicine/Pathobiology College of Veterinary Medicine Kansas State University
FAD Important to U.S. Industry • ASFV Risk: presence in China , lack of an effective vaccine , stability in environment https://www.swinehealth.org/swine-disease-matrix/ https://www.aphis.usda.gov/animal_health/downloads/animal_diseases/swine/asf-china.pdf
3 Part Approach 1. Determine survival in feed and feed ingredients under transboundary model 2. Investigate oral infectious dose through natural feeding and drinking behavior 3. Assess tools for mitigating risk of virus transmission in feed and feed ingredients
Transboundary Model Mean Humidity: 74% (Range 20-100%) Mean Temperature: 54°F (Range 32-79°F) Dee et al., 2018
ASFV in Feed Ingredients Dee et al., 2018
Transboundary Model Dee et al., 2018
3 Part Approach 1. Determine survival in feed and feed ingredients under transboundary model 2. Investigate oral infectious dose through natural feeding and drinking behavior 3. Assess tools for mitigating risk of virus transmission in feed and feed ingredients
Oral Dose Model • 14 replicates = 84 total pigs (7-8 weeks old) – Natural drinking and consumption of feed • ASFV Georgia 2007 – Challenge doses: 10 0 – 10 8 TCID 50 Niederwerder et al., 2018 Submitted to EID
Probability of Infection Niederwerder et al., 2018 Submitted to EID
Multiple Exposures Niederwerder et al., 2018 Submitted to EID
3 Part Approach 1. Determine survival in feed and feed ingredients under transboundary model 2. Investigate oral infectious dose through natural feeding and drinking behavior 3. Assess tools for mitigating risk of virus transmission in feed and feed ingredients State of Kansas NBAF Fund
What are we doing in feed mills? Biosecurity List of all Audit ingredients in the mill Review and classify into negligible or moderate risk
Recommend
More recommend