2. Diffraction at periodic structures 2. Diffraction Patterson function 2. Diffraction 58 60 Scattering geometry Patterson function 2. Diffraction Reciprocal lattice 2. Diffraction 59 61 Real space lattice Reciprocal lattice 2d - lattice 1d - chain
Brillouin zones 2. Diffraction Ewald construction 2. Diffraction 64 62 k The first Brillouin zone is defined as the k 0 Wigner-Seitz cell of the reciprocal lattice. All k vectors at the Brillouin zone boundary fulfil the Laue condition. i) Die Richtung von k 0 ist durch das Experiment vorgegeben (einfallender Strahl). ii) Zeichne k 0 so, dass die Spitze an einem Punkt des reziproken Gitters endet, hier (000). iii) Zeichne einen Kreis (eine Kugeloberfläche) mit Radiusvektor k 0 k Für alle Punkte auf dem Kreis (der Kugeloberfläche) ist G = k – k 0 erfüllt, iv) All k 0 , k satisfying the Laue condition hier G = (340) – (000) = (340). lie on the bisecting plane perpendicular to G hkl k – k 0 = G k 0 Bemerkung: Der Anfang von k 0 liegt in der Abbildung nur zufällig nahe einem Punkt G des reziproken Gitters. Brillouin zones 2. Diffraction X-ray diffraction 2. Diffraction 65 63 Laue method bcc fcc hexagonal transmission reflection Diffraction of collimated, broadband X-ray beam at single crystal sample: • k ’ · k 0 · k ” • analysis of crystal symmetry • orientation of single crystals
X-ray diffraction 2. Diffraction Photons, electrons, neutrons, He atoms 2. Diffraction 66 68 Debeye-Scherrer method Wavelength λ ≈ lattice constant a X-ray film polycrystline sample Monochromatic X-ray diffraction from polycrystalline powder sample • Diffraction rings 0 ≤ 2 Θ ≤ 180 � • G hkl ≤ 2 k 0 • not verry precise, but lattice constant and crystal structure X-ray diffraction 2. Diffraction Low-energy electron diffraction 2. Diffraction 67 69 Rotating crystal method 3-axis goniometer (monochromator, sample, detector) Electrons impinging on the crystal are elastically back-reflected and imaged by a phosphor screen. Monochromatic X-ray diffraction from single crystal The short inelastic mean free path of electrons in conducting materials (only a few lattice planes) makes LEED a surface sensitive technique. • simultaneous rotation: sample by ϑ , detector by 2 ϑ resolution Δ λ / λ ≈ 10 -5 (X-rays or neutrons) •
Brillouin zones 2. Diffraction Laue condition and Bragg reflection 2. Diffraction 70 72 k The first Brillouin zone is defined as the k 0 Wigner-Seitz cell of the reciprocal lattice. All k vectors at the Brillouin zone boundary fulfil the Laue condition. k All k 0 , k satisfying the Laue condition lie on the bisecting plane perpendicular to G hkl k – k 0 = G k 0 G Miller indices 2. Diffraction Structure factor and atomic form factor 2. Diffraction 71 73 n r 3 a 3 Atomic form factor r f Fe for iron a 3 r r n r a 1 a 2 1 a n r 1 2 a 2 Structure factor Some lattice planes and Miller indices of the cubic Bravais lattice
Debye Waller factor 2. Diffraction 74 Intensity of X-ray diffraction (h00) spots from Al Mean square displacement for harmonic oscillator : Debye-Waller factor: temperature (K)
Recommend
More recommend