2 4 0
play

2 4 0 Integer Representation 100 10 1 weight 10 2 10 1 10 0 - PowerPoint PPT Presentation

positional number representation Wellesley CS 240 = 2 x 10 2 + 4 x 10 1 + 0 x 10 0 2 4 0 Integer Representation 100 10 1 weight 10 2 10 1 10 0 position 2 1 0 Base determines: Bits, binary numbers, and bytes Fixed-width


  1. positional number representation Wellesley CS 240 = 2 x 10 2 + 4 x 10 1 + 0 x 10 0 2 4 0 Integer Representation 100 10 1 weight 10 2 10 1 10 0 position 2 1 0 • Base determines: Bits, binary numbers, and bytes Fixed-width representation of integers: unsigned and signed – Modular arithmetic and overflow – • Each position holds a digit. • Represented value = 1 3 ex Powers of 2: binary = base 2 memorize up to ≥ 2 10 (in base ten) 1 0 1 1 = 1 x 2 3 + 0 x 2 2 + 1 x 2 1 + 1 x 2 0 8 4 2 1 weight 2 3 2 2 2 1 2 0 position 3 2 1 0 When ambiguous, subscript with base: 101 10 Dalmatians (movie) 101 ten 101 2 -Second Rule (folk wisdom for food safety) 101 two irony 4

  2. Show powers, strategies. What do you call 4 bits? ex conversion and arithmetic byte = 8 bits a.k.a. octet 19 10 = ? 2 1001 2 = ? 10 Smallest unit of data 0 0 0000 used by a typical modern computer 1 1 0001 2 2 0010 Binary 00000000 2 -- 11111111 2 3 3 0011 4 4 0100 Decimal 000 10 -- 255 10 240 10 = ? 2 11010011 2 = ? 10 5 5 0101 Hexadecimal 00 16 -- FF 16 6 6 0110 7 7 0111 8 8 1000 9 9 1001 Programmer’s hex notation (C, etc.): A 10 1010 101 2 + 1011 2 = ? 2 1001011 2 x 2 10 = ? 2 B 11 1011 0xB4 = B4 16 = B4 hex C 12 1100 Octal (base 8) also useful. D 13 1101 Why do 240 students often confuse Halloween and Christmas? E 14 1110 F 15 1111 7 9 word |wərd| , n. fixed-size data representations Natural (fixed size) unit of data used by processor. (size in bytes ) – Word size determines: Java Data Type C Data Type 32-bit word 64-bit word boolean 1 1 byte char 1 1 char 2 2 short short int 2 2 int int 4 4 float float 4 4 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 long int 4 8 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 double double 8 8 long long long 8 8 long double 8 16 MSB: most significant bit LSB: least significant bit Depends on word size 10 11

  3. Fixed-width integer encodings (4-bit) unsigned integer representation Unsigned non-negative integers only 1 0 1 1 � = 1 x 2 3 + 0 x 2 2 + 1 x 2 1 + 1 x 2 0 8 4 2 1 weight Signed both negative and non-negative integers � 2 3 2 2 2 1 2 0 position 3 2 1 0 n bits offer only 2 n distinct values. n -bit unsigned integers: Terminology: minimum = “Most-significant” bit(s) “Least-significant” bit(s) or “high-order” bit(s) or “low-order” bit(s) maximum = 0110010110101001 MSB LSB 13 14 !!! sign-magnitude modular arithmetic, overflow 15 0 13 1101 1011 Most-significant bit (MSB) is sign bit 11 14 1 1111 0000 0 means non-negative 1 means negative + 5 + 0101 1110 0001 13 2 + 2 + 0010 Remaining bits are an unsigned magnitude 1101 0010 12 3 4-bit 1100 0011 unsigned 1011 integers 0100 8-bit sign-magnitude: Anything weird here? 11 4 1010 0101 0 0000000 represents _____ 10 5 1001 0110 Arithmetic? 1000 0111 9 6 Example: 0 1111111 represents _____ 8 7 4 - 3 != 4 + (-3) x+y in n -bit unsigned arithmetic is (x + y) mod 2 N in math 1 0000101 represents _____ 00000100 unsigned overflow = "wrong" answer = wrap-around +10000011 1 0000000 represents _____ = carry 1 out of MSB = math answer too big to fit ex Zero? Unsigned addition overflows if and only if a carry bit is dropped. 15 17

  4. (4-bit) two's complement two’s complement vs. unsigned signed integer representation _ _ …_ _ _ unsigned 1 0 1 1 places = 1 x -2 3 + 0 x 2 2 + 1 x 2 1 + 1 x 2 0 2 n -1 2 n -2 … 2 2 2 1 2 0 -2 3 2 2 2 1 2 0 - 2 n -1 2 n -2 … 2 2 2 1 2 0 two's complement What's the difference? places 4 -bit two's complement integers: minimum = maximum = n -bit minimum = n -bit maximum = 19 20 ex 8-bit representations 4-bit unsigned vs. 4-bit two’s complement 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 x 2 3 + 0 x 2 2 + 1 x 2 1 + 1 x 2 0 1 x -2 3 + 0 x 2 2 + 1 x 2 1 + 1 x 2 0 11 -5 difference = ___ = 2 ___ 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 – 1 0 15 0 14 1 – 2 + 1 1111 0000 1111 0000 1110 0001 1110 0001 13 2 – 3 + 2 1101 0010 1101 0010 – 4 4-bit + 3 12 3 1100 0011 1100 0011 4-bit two's unsigned complement 1011 0100 1011 0100 – 5 + 4 11 4 n-bit two's complement numbers: 1010 0101 1010 0101 10 5 – 6 + 5 1001 0110 1001 0110 minimum = maximum = 1000 0111 1000 0111 9 6 – 7 + 6 – 8 + 7 8 7 21 22

  5. two’s complement addition two’s complement overflow Addition overflows if and only if the arguments have the same sign but the result does not. -2 2 0010 1110 if and only if the carry in and carry out of the sign bit differ. + -3 + 3 + 0011 + 1101 – 1 0 -1 1111 – 2 + 1 1111 0000 + 2 + 0010 1110 0001 – 3 + 2 – 1 0 1101 0010 – 2 + 1 1111 0000 – 4 + 3 1110 0001 1100 0011 – 3 + 2 1101 0010 1011 0100 – 4 + 3 – 5 + 4 1100 0011 1010 0101 2 0010 -2 1110 1011 0100 – 5 + 4 – 6 + 5 1001 0110 0110 6 1010 0101 1000 0111 + -3 + 1101 + 3 + 0011 – 6 + 5 – 7 + 6 1001 0110 + 0011 + 3 1000 0111 – 8 + 7 – 7 + 6 – 8 + 7 Modular Arithmetic Modular Arithmetic Some CPUs/languages raise exceptions on overflow. C and Java cruise along silently... Feature? Oops? 23 24 ex Another derivation A few reasons two’s complement is awesome Addition, subtraction, hardware How should we represent 8-bit negatives? • For all positive integers x , x and –x should sum to zero. • Use the standard addition algorithm. Sign 00000001 00000010 00000011 Negative one + + + 00000000 00000000 00000000 Complement rules • Find a rule to represent –x where that works… 27

Recommend


More recommend