10 mm cytoarchitecture and function
play

10 mm Cytoarchitecture and function layer 4: input layer 5: output - PowerPoint PPT Presentation

10 mm Cytoarchitecture and function layer 4: input layer 5: output Motor cortex: expanded layer 5, Primary visual cortex: expanded reduced layer 4 layer 4 with three sublayers Korbinian Brodmann ( 1868 - 1918 )


  1. 10 mm

  2. Cytoarchitecture and function layer 4: input layer 5: output Motor cortex: expanded layer 5, Primary visual cortex: expanded reduced layer 4 layer 4 with three sublayers

  3. Korbinian Brodmann ( 1868 - 1918 )

  4. ������ ����� �������฀��

  5. Allman & Kaas, 1981 Zeki, 1978

  6. Physically flattening the macaque brain Van Essen et al., 1992

  7. Medial prefrontal Cingulate Dorsal prefrontal 46 MDP FEF Motor PO V2d P I Somato- M Lateral sensory prefrontal PIPVIP V3d LIP Orbito- frontal 7a DP V3A MSTd Olfactory Auditory S MT T V4t M P S p T l V4d FST PITd STPa V1 CITd AITd PITv V4v ER CITv V3v AITv M VOT 36 LGN TF L V2v ER I TH SC Retina Pulvinar HC 1 cm V an Essen et al., 1992

  8. MDP VIP LIP MIP D P MST PO PIP 7a FST MT V1 V2 V3 STPa STPp V3a PIT V O V4 T CIT AIT W allisch & Movshon, 2008 after Felleman & V an Essen, 1991

  9. Computationally flattening the human brain David Van Essen

  10. Inflating and flattening the human cortex (Tootell and Dale)

  11. Retinotopy (human V1) lower vertical meridian horizontal meridian periphery fovea Left visual cortex upper vertical meridian lower vertical meridian Right visual field fovea upper vertical meridian

  12. Cortical magnification Engel, Glover, & Wandell, Cereb Cortex (1997)

  13. Human visual areas cm Brian Wandell

  14. Human visual areas cm Brian Wandell

  15. A comparison of cortical visual areas in humans and two other primate species. After Tootell and Dale (1996).

  16. Human and macaque visual areas determined using fMRI (Brewer et al., 2002)

  17. Flattening and warping the human and macaque cortex (Van Essen, 2001) Fig. 7. Interspecies comparisons using surface-based warping from the macaque to the human map. (A) Flat map of the macaque atlas, showing landmarks used to constrain the deformation. These include areas V1, V2, MT + , the central, Sylvian, and rhinal sulci, plus landmarks on the margins of cortex along the medial wall. Grid lines were carried passively with the deformation. (B) Landmarks and grid lines projected to the macaque spherical map. (C) Landmarks and grid lines deformed to the human spherical map. Neither of the spherical maps is at the same scale as the fl at maps. (D) Deformed landmarks and grid lines projected to the human fl at map. (E) Visual areas on the macaque fl at map, based on the Lewis and Van Essen partitioning scheme in Fig. 4, plus iso-latitude and iso-longitude lines. (F) Visual areas on the macaque spherical map, plus iso-latitude and iso-longitude lines. (G) Deformed macaque visual areas on the human spherical map, along with deformed iso-latitude and iso-longitude lines. (H) Deformed macaque visual areas on the human fl at map. To download these data, connect to http: // stp.wustl.edu / sums / sums.cgi?spec fi le = 2001-03-06-VH.R.ATLAS – DeformedMa

  18. Human visual cortical areas IPS2 IPS1 V7 V2 V3A/B LO2 IPS2 V1 LO1 V5 IPS1 V7 V4 V3 V3 V2 V3A/B V5 (MT,MST) LO1 LO2 V4 Jonas Larsson and David Heeger

  19. Medial prefrontal Cingulate Dorsal prefrontal 46 MDP FEF Motor PO V2d P I Somato- M Lateral sensory prefrontal PIPVIP V3d LIP Orbito- frontal 7a DP V3A MSTd Olfactory Auditory S MT T V4t M P S p T l V4d FST PITd STPa V1 CITd AITd PITv V4v ER CITv V3v AITv M VOT 36 LGN TF L V2v ER I TH SC Retina Pulvinar HC 1 cm V an Essen et al., 1992

  20. Medial prefrontal e t a u l Dorsal prefrontal g n C i 46 MDP FEF Motor PO V2d P I M Somato- Lateral sensory prefrontal PIPVIP V3d LIP Orbito- frontal 7a DP V3A MSTd Olfactory Auditory S MT V4t M T P S p T l V4d FST PITd STPa V1 CITd AITd PITv V4v ER CITv V3v AITv M VOT 36 LGN TF L V2v ER I TH SC Retina Pulvinar HC 1 cm V an Essen, Anderson & Felleman, 1992

  21. Laminar organization of cortico-cortical connections (Felleman & Van Essen, 1991; Markov et al, 2013) F e e d f o r w a r d F e e d b a c k a b c d e f g 1 2/3 4 5/6

  22. Medial prefrontal e t a u l Dorsal prefrontal g n C i 46 MDP FEF Motor PO V2d P I M Somato- Lateral sensory prefrontal PIPVIP V3d LIP Orbito- frontal 7a DP V3A MSTd Olfactory Auditory S MT V4t M T P S p T l V4d FST PITd STPa V1 CITd AITd PITv V4v ER CITv V3v AITv peri 10 M STPc VOT 36 LGN TF L V2v ER TH/TF I TH MST 9 SC Retina Pulvinar 7A HC 8 1 cm V3A TEpd LIP 8m 7 FST DP 6 MT TEO 5 V4 V3 8L 4 3 2 V2 1 V1 V an Essen, Anderson & Felleman, 1992; Markov et al., 2013 Level

  23. Medial prefrontal e t a u l Dorsal prefrontal g n C i 46 MDP FEF Motor PO V2d P I M Somato- Lateral sensory prefrontal PIPVIP V3d LIP Orbito- frontal 7a DP V3A MSTd Olfactory Auditory S MT V4t M T P S p T l V4d FST PITd STPa V1 CITd Modha and Singh 2010 AITd PITv V4v ER CITv V3v AITv 4.0 Young 1993 M VOT 36 LGN TF L V2v ER Honey et al, 2007 I TH SC Retina 3.5 Pulvinar HC Felleman and Van Essen, 1991 Average Pathlength 1 cm FVE 1991 predicted 3.0 Jouve et al, 1998 Jouve et al, 1998 predicted 2.5 Markov et al, 2013 2.0 1.5 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Graph density V an Essen, Anderson & Felleman, 1992; Markov et al., 2013

  24. Medial prefrontal e t a u l Dorsal prefrontal g n C i 46 MDP FEF Motor PO V2d P I M Somato- Lateral sensory prefrontal PIPVIP V3d LIP Orbito- frontal 7a DP V3A MSTd Olfactory Auditory S MT V4t M T P S p T l V4d FST PITd STPa V1 CITd AITd PITv V4v ER CITv V3v AITv M VOT 36 LGN TF L V2v ER I TH SC Retina Pulvinar HC 1 cm V an Essen, Anderson & Felleman, 1992 Adelson & Bergen, 1990

  25. Medial prefrontal e t a u l Dorsal prefrontal g n C i 46 MDP FEF Motor PO V2d P I M Somato- Lateral sensory prefrontal PIPVIP V3d LIP Orbito- frontal 7a DP V3A MSTd Olfactory Auditory S MT V4t M T P S p T l V4d FST PITd STPa V1 CITd AITd PITv V4v ER CITv V3v AITv M VOT 36 LGN TF L V2v ER I TH SC Retina Pulvinar HC 1 cm V an Essen, Anderson & Felleman, 1992; Markov et al., 2013

  26. Extrastriate visual areas in macaque and mouse (A) Map of extrastriate cortical areas in (B) Visual areas in mouse cortex, showing macaque cortex. The “where” pathway nine extrastriate areas circumscribing primary extends dorsally into the parietal lobe, while visual cortex (V1). Proposed dorsal stream the “what” pathway extends ventrally into and ventral stream areas are shown in red the temporal lobe. Adapted with permission and blue, respectively, with emphasis on from Felleman and Van Essen (1991). putative gateway areas LM and AL. Adapted with permission from Wang and Burkhalter (2007). Niell, 2011

  27. MDP VIP LIP MIP D P MST PO PIP 7a FST MT V1 V2 V3 STPa STPp V3a PIT V O V4 T CIT AIT W allisch & Movshon, 2008 after Felleman & V an Essen, 1991

  28. Physiological evidence for parallel cortical pathways? (Felleman and Van Essen, 1987)

  29. Landmark discrimination Object discrimination Ungerleider & Mishkin, 1982

  30. Sir David Ferrier Lesions that caused blindness

  31. Dorsal pathway Ventral pathway Space, motion, action Form, recognition, memory Ungerleider & Mishkin, 1982

  32. Functional specialization in human extrastriate visual cortex

  33. Dissociating vision for perception and vision for action Polar plots illustrating perceptual orientation judgements ( A ) and orientation adaptation in reaching movements ( B ). The photo inlays illustrate the respective tasks. The different orientations of individual trials have been normalized to the vertical. The polar plots therefore show difference values to the vertical, representing a difference to the target orientation of 0°. Black data plots indicate the data of our patient J.S. and the data of VFA patient D.F. reported by Milner and Goodale (1995). Gray polar plots indicate an exemplary control of our study (A.K.) and the control subject reported by Milner and Goodale (1995) (Con). Bar plots illustrate SDs of J.S.'s responses in either task and average SDs in our group of healthy controls (error bars denote 1 SD). Milner & Goodale, 1995; Karnath et al 2009

Recommend


More recommend