1
Micromechanics using Spectral Method Interface Decohesion in Polycrystals L. Sha harma, P. Shanthraj, M.Diehl, F. Roters, D. Raabe, R. Peerlings and M. Geers
Ou Outline line • Motivation • DAMASK- material simulation kit • The Spectral Solver • Basic scheme • Some applications • Demo: a very simple (1D) implementation using petsc4py • Smeared damage mechanics • Interface decohesion in Polycrystals. • Future Work
Mo Motiv tivation ation • strain localization • tool design • damage initiation • crashworthiness • recrystallization nucleation • component properties • … • …
Mo Motiv tivation ation http://www.virtualexplorer.com.au/special/meansvolume/contribs/jessell/labs/02a.m ov Crystal Plasticity is always a multi-scale problem ! 5
Mo Motiv tivation ation simulation requirements Crystal Plasticity Finite Elemente Method • arbitrary mechanical (CPFEM) boundary value Or problems Crystal Plasticity • continuum mechanics Spectral Method • accounting for crystal (CPFFT) plasticity 6
CP CPFEM/ FEM/CPFFT CPFFT st strat rategy egy solver for • equilibrium • compatibility 𝐆 𝐐 material point model F e deformation constitutive law F M partitioning crystallite • elasticity S & elasto-plasticity • plasticity P homogenization L p 7
Th The sp spectral tral so solv lver A little history Use spectral method instead of FEM Solution based on FFT Much faster than FEM Small strain framework Elastic material law Extended to viscoplastic materials Large strain formulation Coupled with DAMASK 8
Sp Spectral ctral me method hod Static equilibrium: Material law: 𝝉 = 𝑫𝜻 div 𝝉 = 0 Split strain: 𝜻 = 𝜻 + 𝜻 Introduce reference medium: Stiffness 𝑫 𝜻 𝑛+1 = 𝜻 𝑛 − 𝜟 ∗ 𝝉 𝑛 𝜻 𝑛+1 = 𝜻 𝑛 − ℱ −1 𝝉 𝑛 FFT 𝜟: −1 with Γ 𝑗𝑘𝑙𝑚 = 𝑙 𝑘 𝑙 𝑚 𝑂 𝑗𝑙 and 𝑂 𝑗𝑙 = 𝑙 𝑚 𝑙 𝑘 𝐷 𝑗𝑘𝑙𝑚 9
Co Comp mparion arion FEM FEM vs vs FFT FFT P. Eisenlohr., M. Diehl, R. A. Lebensohn, F. Roters: International Journal of Plasticity (2013), 37 - 53 10
Ex Experim rimental ental-Numerical Numerical Example: Basal slip in Magnesium F. Wang, S. Sandloebes, M. Diehl, L. Sharma, F. Roters, D. Raabe:Acta Materialia 80 (2014) 77-93 11
Me Mesosc oscale ale me mechan hanics ics • High Resolution Crystal plasticity enabled through robust spectral solvers Shanthraj et al. [IJP, 2015] 12
Demo mo ( 1D elasticity + spectral method using petsc4py ) 13
Int nterface erface decoh ohesion esion (form ormab ability ility li limi miter) er) Void Role e of th the e Int nter erfa face ces Growth/Propagation Sur urroun oundin ding Microst ostru ructur ture Void ? Initiation Compu puta tati tion onal to tool to to model Inte terfa face ce decohesion ion 14
Int nterface erface mo modeli ling ng of of pol olycrystals crystals Interface band Interface elements 15
Ei Eige gen n St Stra rain in Dama mage ge ( Pandolf olfi, i, Ortiz z et al.; ; Menzel el, , Ekh et al., 2002 ) ) • Accomodation by eigen strain. • In an anisotropic way (normal and tangential modes). • (interface-) plane stretching effects. 16
Field problem 17
Dama mage ge re regulariz gularization ation so solv lved us usin ing g FFT FFT • Hetrogenous regularization lengthscale • Utilize Fourier transform • Solved for its roots using Jacobian free Newton method. 18
Te Test st Si Simu mulatio lation 19
Pol olycryst ycrystal al Si Simulation mulation • Res esolut ution on: 256x256x2 • Ran andomly ly orien enta tati tion on FCC • Elas asto to-pl plas astic tic-dam damage age (cryst ystal plasti ticit ity) y) • Int nter erfa face ce Band nd th thickne ness: 4 voxels 20
Polyc ycryst rystal al Si Simu mula latio tion: n: Dama mage e ev evolutio tion 21
Polyc ycryst rystal al Si Simu mula latio tion: n: St Stes ess s Unloadin ding 22
Polyc ycryst rystal al Si Simu mula latio tion: n: Dama mage e vs Plastic sticity ity 23
Fut Future ure wo work rk • Coupling with damage models in the bulk • Monolithic schemes for Multiphysics • Implementation using petsc4py • Time integrators (Fortran support) 24
Acknowl knowledgme edgment nt Düsseldorf Advanced MAterial Simulation Kit, DAMASK Available as freeware according to GPL 3 Integrates into MSC.Marc and Abaqus (std. and expl.) Standalone spectral solver Web: https://DAMASK.mpie.de Email: DAMASK@mpie.de 25
Thank you. Questions?
Simu Si mulat lation ion ( hexag ally ) xagon onal al polycry cryst stal al loaded ded hori rizo zont ntall 27
Si Simu mulat lation ion 28
St Stra rain in lo localis lisation ation 29
Br Britt ittle le Si Simu mulat lation ion Damage Strain (F11) Stress (P11) 30
Me Mesosc oscale ale me mechan hanics ics • Crystal plasticity. • FFT based Spectral method Shanthraj et al. [2015] 31
Ex Experim rimental ental-Numerical Numerical Example: Basal slip in Magnesium Wang et al. [2014] 32
Ra Rate te in independe endent nt 33
Ra Rate te in independe endent nt 34
Local Damage • 1 for undamaged material • 0 for fully damaged • Monotonously decreases (irreversibility) 35
Normal opening strains 36
Tangential opening strains 37
Stress Integration (the Local problem) 38
Mesh Objectivity • Coarse mesh (10 fourier points in the band) • Fine = 2x coarse 39
Wo Work rk of of se separation ration wi with h band nd thi hickness kness 40
Vox oxelize elized fie ield ld of of the he no norm rmals als • Generator points of • First order cartesian standard voronoi tessellation. moments. [ Libermann et al., 2015 ] 2 3 3 3 3 3 2 2 2 4 4 2 2 4 4 2 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 41
Recommend
More recommend