1
play

1 R O M I T C H A K R A B O R T Y T H E M A Z Z I O T T I G R O - PowerPoint PPT Presentation

OPENNESS OF MANY-ELECTRON QUANTUM SYSTEMS FROM THE GENERALIZED PAULI EXCLUSION PRINCIPLE 1 R O M I T C H A K R A B O R T Y T H E M A Z Z I O T T I G R O U P T H E U N I V E R S I T Y O F C H I C A G O THE PAULI EXCLUSION PRINCIPLE No


  1. OPENNESS OF MANY-ELECTRON QUANTUM SYSTEMS FROM THE GENERALIZED PAULI EXCLUSION PRINCIPLE 1 R O M I T C H A K R A B O R T Y T H E M A Z Z I O T T I G R O U P T H E U N I V E R S I T Y O F C H I C A G O

  2. THE PAULI EXCLUSION PRINCIPLE • No two fermions can occupy the same quantum state (Pauli, 1925) • Fermion occupation numbers must lie between 0 and 1 0 ≤ n i ≤ 1 • Comes from the skew-symmetry of Wolfgang Pauli the N-fermion wave function (Dirac, Heisenberg, 1926) 1 A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963) 2

  3. DEFINITIONS • A general N-fermion pure state is expressible by the outer product of the N- fermion wave function N D (1 , 2 , .., N ; ¯ 1 , ¯ 2 , .., ¯ N ) = Ψ (1 , 2 , .., N ) Ψ ∗ (¯ 1 , ¯ 2 , .., ¯ N ) 3 1 A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963)

  4. DEFINITIONS • A general N-fermion pure state is expressible by the outer product of the N- fermion wave function N D (1 , 2 , .., N ; ¯ 1 , ¯ 2 , .., ¯ N ) = Ψ (1 , 2 , .., N ) Ψ ∗ (¯ 1 , ¯ 2 , .., ¯ N ) • A general N-fermion quantum system is expressible by an N-fermion ensemble density matrix 2 , .., ¯ 2 , .., ¯ N D (1 , 2 , .., N ; ¯ 1 , ¯ � i (¯ 1 , ¯ N ) = w i Ψ i (1 , 2 , .., N ) Ψ ∗ N ) i 4 1 A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963)

  5. DEFINITIONS • A general N-fermion pure state is expressible by the outer product of the N- fermion wave function N D (1 , 2 , .., N ; ¯ 1 , ¯ 2 , .., ¯ N ) = Ψ (1 , 2 , .., N ) Ψ ∗ (¯ 1 , ¯ 2 , .., ¯ N ) • A general N-fermion quantum system is expressible by an N-fermion ensemble density matrix 2 , .., ¯ 2 , .., ¯ N D (1 , 2 , .., N ; ¯ 1 , ¯ � i (¯ 1 , ¯ N ) = w i Ψ i (1 , 2 , .., N ) Ψ ∗ N ) i • Integration of the N-fermion wave function over all co-ordinates save one yields the one-electron reduced density matrix or the 1-RDM � 1 D (1; ¯ N D (1 , 2 , .., N ; ¯ 1) = 1 , 2 , .., N ) d 2 d 3 ..dN. 5 1 A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963)

  6. DEFINITIONS • A general N-fermion pure state is expressible by the outer product of the N- fermion wave function N D (1 , 2 , .., N ; ¯ 1 , ¯ 2 , .., ¯ N ) = Ψ (1 , 2 , .., N ) Ψ ∗ (¯ 1 , ¯ 2 , .., ¯ N ) • A general N-fermion quantum system is expressible by an N-fermion ensemble density matrix 2 , .., ¯ 2 , .., ¯ N D (1 , 2 , .., N ; ¯ 1 , ¯ � i (¯ 1 , ¯ N ) = w i Ψ i (1 , 2 , .., N ) Ψ ∗ N ) i • Integration of the N-fermion wave function over all co-ordinates save one yields the one-electron reduced density matrix or the 1-RDM � 1 D (1; ¯ N D (1 , 2 , .., N ; ¯ 1) = 1 , 2 , .., N ) d 2 d 3 ..dN. • Eigenfunctions of the 1-RDM are the natural orbitals while its eigenvalues are natural occupation numbers 6 1 A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963)

  7. N-REPRESENTABILITY Ensemble 1-RDM is derivable from the N- fermion ensemble density matrix The Pauli Exclusion Principle is necessary and sufficient for ensemble N-representability of the 1-RDM 0 ≤ n i ≤ 1 (Coleman, 1963) 7 1 A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963)

  8. N-REPRESENTABILITY Ensemble Pure 1-RDM is derivable from the N- 1-RDM arises from the pure fermion ensemble density matrix density matrix The Pauli Exclusion Principle is Generalized Pauli Conditions are necessary and sufficient for pure N-representability ensemble N-representability of conditions on the 1-RDM the 1-RDM More stringent and complicated than the Pauli condition 0 ≤ n i ≤ 1 (Coleman, 1963) Defines a convex polytope in the space of natural occupations 8 1 A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963)

  9. GENERALIZED PAULI CONSTRAINTS Constraints Feasible Set n i ≥ n i + 1 , ∀ i ∈ {1..( r − 1 )} 0 ≤ n i ≤ 1 Pauli r n i = N ∑ i = 1 defines convex set 1 E ( N , r ) 1 E (3,6) 2 R. E. Borland and K. Dennis, J. Phys. B 5, 7 (1972) 9 3 A. A. Klyachko, J. Phys. Conf. Ser. 36, 72 (2006)

  10. GENERALIZED PAULI CONSTRAINTS Constraints Feasible Set n i ≥ n i + 1 , ∀ i ∈ {1..( r − 1 )} 0 ≤ n i ≤ 1 Pauli r n i = N ∑ i = 1 defines convex set 1 E ( N , r ) 1 E (3,6) n i ≥ n i + 1 , ∀ i ∈ {1..( r − 1 )} Generalized r 0 ≤ n i ≤ 1 , n i = N , ∑ Pauli i = 1 r A ij n i ≥ b j ∑ 1 P (3,6) i = 1 defines convex set 1 P Feasible sets in the Borland ( N , r ) Dennis setting 2 R. E. Borland and K. Dennis, J. Phys. B 5, 7 (1972) 10 3 A. A. Klyachko, J. Phys. Conf. Ser. 36, 72 (2006) 5 R. Chakraborty, D. A. Mazziotti, Phys. Rev. A, 89, 042505 (2014)

  11. FEASIBLE SETS Occupation numbers 1.0000 1.0000 0.9000 0.9996 0.6000 0.9996 0.3000 0.0004 0.1000 0.0004 0.1000 0.0000 Both sum to 3 Both obey the Pauli principle Which one of these sets come from the wave function? 11

  12. GENERALIZED PAULI EXCLUSION Occupation numbers 1.0000 1.0000 0.9000 0.9996 0.6000 0.9996 0.3000 0.0004 0.1000 0.0004 0.1000 0.0000 Spectrum of occupations in Li 12

  13. OPEN QUANTUM SYSTEMS Generalized Pauli constraints are necessary for conditions for a pure • quantum state A closed system 13

  14. OPEN QUANTUM SYSTEMS Generalized Pauli constraints are necessary for conditions for pure • quantum states An open system Violation of Generalized Pauli conditions provide a sufficient condition for • the openness of a many-electron quantum system These conditions can be used to study the interaction of a quantum • system with its environment 14

  15. SUFFICIENT CONDITIONS FOR OPENNESS Spectra can be represented by an N-fermion wavefunction (pure) if and only if • they lie inside the pure set 1 P (N,r) Spectra can be represented by an N-fermion density matrix if and only if they lie • inside the ensemble set 1 E (N,r) Spectra in the outside the pure set but inside the ensemble set ( 1 E (N,r) \ 1 P (N,r) ) • cannot be represented by an N-fermion wavefunction Violation of Generalized Pauli Conditions are sufficient to certify openness of a • many-electron quantum system form sole knowledge of the 1-RDM 15 6 R. Chakraborty, D. A. Mazziotti Phys. Rev. A, 91, 010101(R) (2015)

  16. DEGREE OF OPENNESS The nature and extent of spectral deviation from Generalized Pauli condtions • can be used to quantify the degree of openness in an interacting quantum system We use a euclidean metric (pure distance) to quantify deviation from the • facets of the pure set (polytope) defined by the Generalized Pauli conditions 16 6 R. Chakraborty, D. A. Mazziotti Phys. Rev. A, 91, 010101(R) (2015)

  17. DEGREE OF OPENNESS The nature and extent of spectral deviation from Generalized Pauli condtions • can be used to quantify the degree of openness in an interacting quantum system We use a euclidean metric (pure distance) to quantify deviation from the • facets of the pure set (polytope) defined by the Generalized Pauli conditions Pure distance is written as the Sequential Quadratic Program: • 17 6 R. Chakraborty, D. A. Mazziotti Phys. Rev. A, 91, 010101(R) (2015)

  18. DEGREE OF OPENNESS The nature and extent of spectral deviation from Generalized Pauli condtions • can be used to quantify the degree of openness in an interacting quantum system We use a euclidean metric (pure distance) to quantify deviation from the • facets of the pure set (polytope) defined by the Generalized Pauli conditions Pure distance is written as the Sequential Quadratic Program: • σ ! n − ! Pure Distance = min min p ! j p r such that p i = N ∑ i = 1 p i ≥ p i + 1 ∀ i ∈ [1 , r − 1 ] 0 ≤ p i ≤ 1 ∀ i ∈ [1 , r ] r A ji n i = b j ∑ i = 1 18 6 R. Chakraborty, D. A. Mazziotti Phys. Rev. A, 91, 010101(R) (2015)

  19. DEGREE OF OPENNESS The nature and extent of spectral deviation from Generalized Pauli conditions • can be used to quantify the degree of openness in an interacting quantum system We use a euclidean metric (pure distance) to quantify deviation from the • facets of the pure set (polytope) defined by the Generalized Pauli conditions Pure distance is written as the Sequential Quadratic Program: • σ ! n − ! Pure Distance = min min p σ is positive (negative) when the spectrum is Ø ! j p inside (outside) the pure set r such that p i = N ∑ Minimum distance to the facets of the ensemble Ø set 1 E (N,r) and Slater point calculated for i = 1 comparison p i ≥ p i + 1 ∀ i ∈ [1 , r − 1 ] Pure ≤ Ensemble ≤ Slater by definition Ø 0 ≤ p i ≤ 1 ∀ i ∈ [1 , r ] Pinned (quasi-pinned) if constraints are saturated r Ø A ji n i = b j ∑ (close to being saturated) i = 1 19 6 R. Chakraborty, D. A. Mazziotti Phys. Rev. A, 91, 010101(R) (2015)

  20. PHOTOSYNTHETIC ENERGY TRANSFER • Environmental interactions in photosynthetic energy transfer • The Fenna-Mathews-Olson complex (FMO) • Dynamics in the FMO complex d d tD ¼ � i p ½ ^ H , D � þ ^ L ð D Þ ð ^ L ð D Þ ¼ ^ L deph ð D Þ þ ^ L diss ð D Þ þ ^ L sink ð D Þ ð 20 5 M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, J. Chem. Phys. 129 , 174106 (2008)

  21. TRAJECTORY OF THE FMO • The three chromophore subsystem has similar efficiency to the full 7-chromophore network • We are able to visualize the time dependent trajectory in the space of natural orbital occupations Closed Trajectory in population space with femtosecond resolution. Points in green lie inside the pure set 21 6 R. Chakraborty, D. A. Mazziotti Phys. Rev. A, 91, 010101(R) (2015)

Recommend


More recommend