0
play

-----------------------0 .- EN P ERGY I ~i~c~f :: ! Fermi lab - PowerPoint PPT Presentation

FERMILAB-SLIDES-19-008-CD -----------------------0 .- EN P ERGY I ~i~c~f :: ! Fermi lab Neutrino Experiment Simulation Overview Michael Kirby, Fermilab/Scientific Computing Division Mar 20, 2019 Thomas Jefferson National Accelerator Facility


  1. FERMILAB-SLIDES-19-008-CD -----------------------0 .- EN P ERGY I ~i~c~f :: ! Fermi lab Neutrino Experiment Simulation Overview Michael Kirby, Fermilab/Scientific Computing Division Mar 20, 2019 Thomas Jefferson National Accelerator Facility This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics

  2. Outline Big thanks to Laura Fields, Alex Himmel, Mary Bishai, Tao Lin, • outlook on precision measurements in neutrino oscillations Rob Kutschke, Krzysztof • where simulations come into the picture Genser, Jen Raaf, Gabe Perdue, Renee Fatemi, and • simulation of neutrino beam fluxes and systematics Leah Welty-Reiger for help with • neutrino interaction event generators and cross sections this talk. They deserve the • detector simulation with GEANT4 credit. All mistakes are mine. • slight diversion about other IF experiments at Fermilab Sanford Unde~~round Research Fac1hty Fermilab C= Fermilab � 2

  3. Neutrino Simulations in the era of oscillations • Many neutrino experiments have measurement of neutrino oscillation parameters as their primary goal 140 35 DUNE v. appearance DUNE v. appearance 3.5 years (staged) 3.5 years (staged) Normal MH, 6cP=0 Normal MH, 6cP=0 120 30 - Signal (v 0 +v 0 ) CC - Signal (v 0 +v 0 ) CC 100 > 25 > - Beam (v 0 +v 0 ) CC - Beam (v 0 +v 0 ) CC Q) Q) C, C, - NC - NC 80 20 LO LO - (v,+v,) CC - (v,+v, )CC "! "! -- -- - (vµ+vµ )CC - (vµ+vµ )CC 0 0 en en c c 15 Q) Q) > > w w 0 2 3 7 8 2 3 Reconstructed Enerqy (GeV) Reconstructed Energy (GeV) Oscillation Probability Neutrino Interaction Efficiency / Smearing Flux Cross Section Function ------------------------------- CFermilab � 3

  4. ~ Neutrino Simulations in the era of oscillations • Mass ordering, CP-violation, mixing matrix unitarity 0 C • precision measurements of oscillation 
 Normalized by area 9 parameters requires accurate simulation 
 8 of detector response and efficiency K2K @ Neutrino 2002 7 Koichiro Nishikawa 6 Oscillation Probability 5 4 Neutrino Interaction Efficiency / Smearing 3 Flux Cross Section Function 2 • interaction cross sections & detector uncertainties 
 have significant impact on the potential reach 
 O O 0 .5 1 1.5 2 2.5 3 3 .5 4 4 .5 5 of oscillation experiments E • beam fluxes dominant uncertainty for measurements 
 of interaction cross sections and event yields ------------------------------- CFermilab Laura Fields � 4

  5. -r1 - ◊c p= 2 Neutrino Simulations in the era of oscillations DUNE vµ disappearance 3.5 years (staged) • Mass ordering, CP-violation, mixing matrix unitarity - Signal v" CC - NC • precision measurements of oscillation 
 - (v,+v, )CC - Bkgd vµ CC parameters requires accurate simulation 
 of detector response and efficiency Oscillation Probability 2 3 4 5 6 7 8 Reconstructed Energy ( GeV ) CP Violation Sensitivity Neutrino Interaction Efficiency / Smearing DUNE Se nsitivity 14 Normal Ordering - 50% of S C P values sin22 01 = 0.085 ± 0.003 - 75% of OcP values 3 Flux Cross Section Function . . .. .. 5% $ 1% .441 ± 12 sin 2 0 23 ;;; O O . O42 - Nominal : 5% EB 2% " '" '"'"' 5 °/4 $ 3% • interaction cross sections & detector uncertainties 
 have significant impact on the potential reach 
 II tl of oscillation experiments • beam fluxes dominant uncertainty for measurements 
 of interaction cross sections and event yields 200 400 600 800 1000 1200 1400 Exposure (kt-MW-years) CFermilab Laura Fields � 5

  6. ► Beam simulations and neutrino flux • Hadron production: NuMI Beam based up production models from hadrons l l l Muon Monitors Target Hall exiting the targets and ~ bsorber o _ eca _~_ P_ ipe ___ r ___ -- \ ___ _ Target from secondary and --- - - - - - u ,, tertiary interactions in the - - - -+ Protons from uµ µ• Main Injector Hom 2 Hom 1 horn, decay pipe, etc - - --- + u ,, 1 0m 3 0m 6 75 m • horn focusing: particle S m ii-;; 18m 2 10m Hadron Monitor propagation through Rock magnetic fields and • simulate proton beam (8-120 GeV) incident on targets (thin, thick, C, Be) alignment of the horn • elements T2K Beam Simulation: FLUKA 2011.2c -> GEANT3+GCALOR • • other subdominant MINERvA Beam Simulation: GEANT4 for production and simulation effects: gas in the decay – developed the ppfx package for hadron production uncertainties pipe, absorber material, • Booster Neutrino Beam: GEANT4 based tools developed by MiniBooNE 
 decay pipe windows used by MicroBooNE, SBND, ICARUS • near detectors help minimize uncertainty for oscillation measurements - not a silver bullet CFermilab � 6

  7. ~ CADMesh utilized by the Muon g-2 Experiment • Translates CAD files into GDML for simulation in GEANT • allows for precise shape and location of detector components without recreation in GDML by hand • does require greater precision than engineers are sometimes focused on • gaps in volumes and overlapping volumes can be serious problems in GEANT 100 10 Q) E F 1 • CPU • ClockTime Leah Welty-Reiger, Renee Fatemi 0.1 1 10 100 1000 10000 ____::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::i C Ferm ilab Number of Events � 7

  8. ~ CADMesh utilized by the Muon g-2 Experiment • Translates CAD files into GDML for simulation in GEANT • allows for precise shape and location of detector components without recreation in GDML by hand • does require greater precision than engineers are sometimes focused on • gaps in volumes and overlapping volumes can be serious problems in GEANT 100 10 Q) E F 1 • CPU • ClockTime Leah Welty-Reiger, Renee Fatemi 0.1 1 10 100 1000 10000 ____::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::i C Ferm ilab Number of Events � 8

  9. ~ 1 ~ ~ T2K Beam simulation • hadron interactions are the greatest source of uncertainty for the flux prediction • constrain the pion production using NA61/SHINE, HARP datasets ND280: Neutrino Mode, vµ - - Hadron In teractions -- Material Mcxle ling 0.94 < cos0 < 0.98 0.98 < cos0 < 1.0 0.3 -- ProtonBeamProfile&Off - axi s Angle -- NumberofProtons - Data Statistical Uncertainty -- Hom Current & Field -- Thin Tuning Total .... - -- Ho rn & Targ et Alignment - Flux+Background+Pion FSI 0 V Cl> xEv, Arb. Norm. t=10-1 0.2 Q) - Detector v-mode "iii 5 10 -2 n - Signal Modeling II,, 0.1 U..10 -3 - ProtonFSI - Mass 1()-' L... ............ ._ ................................. ..... 10-' 0.0 10 -" 10-" 10-' 10 10 10 Ev (GeV) pµ pµ [GeV/c] [GeV/c] true true Nulnt2018 T. Vlaclisavl1ev1c • neutrino flux uncertainty dominates the measurement of CC0 π production • this is the golden channel for measuring oscillation parameters - cleanest incident neutrino energy determination CFermilab � 9

  10. ➔ - ■-■- :,. ,. n X ➔ nC - KX ➔ • pC • • • r X pC MINERvA Beam Simulation ~ab~•- ~-7 - o :t: he ~ r 0.16 - J: I ~ P ~ h~ ys ~- ~ R ~ e ~ v~ . D ~ 9 =: 4 ::: , ::: 0= 9= 20 =0 =. 5 === {2 = 0 = 1 =~=~ - ~ - meson inc. - target abs. • Hadron production model variation dominant effect for 0.14 • ••. nucleon-A 1/) ••• • pC ➔ nucleonX - others ~0 .12 C -total HP determining the uncertainty "iii "li3 0.1 u – use data from NA49, MIPP to tune the flux §0 .00 ........ : •••••••••• ·- - -·· •• ·- ••••• _, •• • 1 •• ·• •••• • ••• ..... – scale 158 GeV proton data to 120 GeV using FLUKA -~r- - ··-. ...................................... – incorporated into Package to Predict the Flux (PPFX) . 8 .. ,- ;~ - :' ." ";" ~ -- --- i: ---- ~ - ~ -- 18 6 20 2 4 Neutrino Energy (GeV) • still dominate uncertainty in most of the MINERvA V + A ➔ µ· + 7t+ + A x10· 39 µ measurements 2 - = Total Sys. Error = - Dete ctor Model ~n~:;;:ti~: s: :~: ~ ::~:band Model • pioneering measurements to constrain the flux using • ~==j - Tracking Eff - Vertex ~ En ~•= neutrino scattering off electrons measurements - but suffers from limited statistics • cross sections measurements important inputs for improving neutrino interaction models and predictions 5 10 15 20 Neutrino Energy (GeV) Deepika Jena, NuINT 2018 CFermilab � 10

  11. Neutrino Interactions Simulation Quasi'elas0c" Lots%of%interes+ng%(nuclear)%physics%over%all%energy%ranges.% (QE)" ν μ" μ '" A. Schukraft, G. Zeller / GeV) MicroBooNE 1.4 W" Many%open%ques+ons% need%experimental%&% p +" n" 1.2 theore+cal%input!% 2 cm 1 -38 Resonance" (10 TOTAL (RES)" 0.8 ν ν μ" μ '" cross section / E QE 0.6 π +" W" DIS 0.4 n" Δ +" RES 0.2 n" Deep"inelas0c" ν 0 -1 2 (DIS)" 10 10 1 10 ν μ" μ '" E (GeV) T2K ν W" NOvA n" X " DUNE � 11

Recommend


More recommend