YITP workshop MIN16 - Meson in Nucleus 2016 - πΏ 0 Ξ photoproduction on the neutron studied with the FOREST detector at ELPH Yusuke TSUCHIKAWA for the FOREST collaboration Department of Physics, Nagoya University 1, Aug, 2016 Y. TSUCHIKAWA 1
πΏ 0 π photoproduction on the neutron studied with the FOREST detector at ELPH Outline - Baryon spectroscopy and πΏπ channels Introduction - Narrow peak structures of special interest at W βΌ 1.67 and 1.71 GeV - ELPH & 4 π electromagnetic calorimeter FOREST Experiment Analysis - Particle identification, Kinematic fit - Yield counting, Background subtraction - Differential and Total cross sections Results - Reaction mechanism for the πΏ 0 Ξ photoproduction Summary 1, Aug, 2016 Y. TSUCHIKAWA 2
Baryon spectroscopy via πΏπ photoproduction -> accessible highly excited baryons which hardly couple to ππ (ππ) β’ πΏ + Ξ(Ξ£) : recently well studied (CLAS, LEPS, SAPHIR, MAINZ,β¦) β’ πΏ 0 Ξ(Ξ£) : few reports π Allowed, πΉπ β π³ π π³ reaction Ξ πΏ if πΏ Β± Ξ Isospin selective -> π³π³: 1/2 , πΏΞ£ : 3/2 Expected few t-channel contributions s -channel u -channel t -channel All of the participants are NEUTRAL β no πΏ (not πΏ β ) can be exchanged β Born term contributions are expected to be smaller than that of the πΏ + Ξ case K. Tsukada et al. (NKS collaboration), Phys. Rev. C 83 039904 The previous measurement near the reaction threshold was done for πππ = [0.9, 1.0) πΉ πΏ = 0.9, 1.1 GeV and cos π πΏ Need the study with entire angle region 1, Aug, 2016 Y. TSUCHIKAWA 3
πΏπ β ππ πΏπ β ππ -> A narrow resonance-like structure @1670 MeV π(1670) πΏπ β ππ -> No such structure (but a dip?) LNS (ELPH) GRAAL FOREST SCISSORS II exp. V. Kuznetsov et al., Phys. Lett. B 647, 23 (2007) F. Miyahara et al., Prog. Theor. Phys. Suppl. 168, 90, (2007) T. Ishikawa et al., PoS (Hadron2013)025 A2@Mainz CBELSA/TAPS R.Wertmuller et al ., PRC 90, J.Jeagle et al , PRL 100 , 1, Aug, 2016 Y. TSUCHIKAWA 4 015205 (2014) 252002 (2008)
πΏπ β ππ πΏπ β ππ -> A narrow resonance-like structure @1670 MeV π(1670) πΏπ β ππ -> No such structure (but a dip?) LNS (ELPH) GRAAL FOREST SCISSORS II exp. V. Kuznetsov et al., Phys. The prominent structure observed in the πΏπ β ππ Lett. B 647, 23 (2007) Reported by many exp. groups LNS ( ELPH) , GRAAL , MAINZ , CB-ELSA/TAPS F. Miyahara et al., Prog. Theor. Phys. Suppl. 168, 90, (2007) β Consistent results: T. Ishikawa et al., Narrow width (βΌ ππ πππ ) and peak position βΌ 1670 MeV PoS (Hadron2013)025 A2@Mainz Observed in the π πΉ, π½ π reaction but not in the π πΉ, π½ π case CBELSA/TAPS R.Wertmuller et al ., PRC 90, J.Jeagle et al , PRL 100 , 1, Aug, 2016 Y. TSUCHIKAWA 5 015205 (2014) 252002 (2008)
Intrinsic narrow state π(1670) Recent theoretical interpretations β Intrinsic narrow state β Coupled-channel effects β Interference effects β πΏπ threshold effects β β¦ Interference effect Threshold effect (KY ch.) More experimental Anisovich et al., Eur. Phys. J. A 51 , 72 (2015) information is needed M. DΓΆring and K. Nakayama, Phys. Lett. B 683, 145 (2010). -> How about the πΏ 0 Ξ case? Similarities between ππ & πΏ 0 Ξ - Isospin 1/2 S(1535)&S(1650) - πΉπ initial state - π π component Confirmation of the N(1670) must be a valuable info. 1, Aug, 2016 Y. TSUCHIKAWA 6
π 1710 ? Another narrow, but small, peak structure has been also observed in π(π 0 ) photoproduction Re-analysis of the πΏ π, π π reaction (re-binned ver.) Ξ£ asymmetry of the πΏ π, π π 0 reaction Werthmuller et al., arXiv 1511.0829 (very recent!) Kuznetsov et al., Phys. Rev. C 91, 042201 (2015) GRAAL MAINZ ππ ππ Ξ = 15 Β± 4 MeV 1, Aug, 2016 Y. TSUCHIKAWA 7
Experiment @ ELPH, Tohoku University, Sendai 1.2 GeV Electron Synchrotron and photon beam line @ Research Center for Electron Photon Science (ELPH) Layout of ELPH beam lines (~2012) ST retcher- B ooster Ring: 1.2 GeV electron synchrotron GeV- πΏ Beam line: 0.5-1.2 GeV photon 1.2 GeV Injector 1, Aug, 2016 Y. TSUCHIKAWA 8
4 π electromagnetic calorimeter complex FOREST 252 Lead/SciFi mod.s PS Γ 12 192 Pure CsI 24 PS Γ 3 layers 62 Lead/Glass PS Γ 18 (Forward) (Backward) π πΉ /πΉ (1 GeV πΏ ) ~3 % ~ 7 % ~ 5 % Coverage π 5 Β° βΌ 24 Β° 30 Β° βΌ 100 Β° 110 Β° βΌ 170 Β° Target: liquid H2/D2 target (45.9 mm thick) πΏ πΉ πΏ = 750 β 1150 MeV π’βπ πΏ 0 Ξ = 915 MeV) ( πΉ πΏ 1, Aug, 2016 Y. TSUCHIKAWA 9
Particle identification πΏπΏ invariant masses Focusing decay chains: πΏ π 0 πΏ πΏ 1 πΏ 2 πΏ 3 πΏ 4 πΏ 0 50% 0 πΏ π 30.69% πΏ π 0 πΏ π π Ξ 63.9% π β π 4 photons and 2 charged particles in the final state ππ β π β 4πΏ ππ β π πΏπ β πΏ 0 Ξπ β πΏ π 0 Ξπ β π 0 π 0 Proton in the deuteron is assumed as a spectator 1, Aug, 2016 Y. TSUCHIKAWA 10
16 variables: Kinematic fit with 4 constraints πΏ π momentum, polar, and azimuthal angles: πΉ π , π π , π π (π = 1, β¦ , 4) , same for proton: π π , π π , π π , β πΉπΉ invariant mass = π π π β x2 and Photon beam energy : πΉ πΏ 1. π 2 πΏ 1 , πΏ 2 β‘ 2πΉ 1 πΉ 2 1 β sin π 1 sinπ 2 cos π 1 β π 2 β cos π 1 cos π 2 = π π 0 2 2. π 2 πΏ 3 , πΏ 4 β‘ 2πΉ 3 πΉ 4 1 β sin π 3 sinπ 4 cos π 3 β π 4 β cos π 3 cos π 4 = π π 0 2 2 β π 2 πΏ 1 , πΏ 2 , πΏ 3 , πΏ 4 β‘ πΉ π 2 β π 2 = πΉ πΏ + π π β π=1 β ππΉ missing mass = π π§ β : 3. π π 4 2 (πΉ π , π π , π π , πΉ πΏ ) = π Ξ 2 πΉ π π π 2 πΏ 1 , πΏ 2 , πΏ 3 , πΏ 4 , π = π π β β ππΉπ missing mass = π π β β: 4. π π 2 π 0 π 0 π β π Selected events with detected values Contamination of accidental events -> sideband subtraction Accidentally triggered events 1, Aug, 2016 Y. TSUCHIKAWA 11
πΏ 0 signal Clear peak but S/N ~50% πΏ 0 Clear peak but S/N ~50% π = 494.9 3 MeV π = 17.9(3) MeV About 8,400 πΏ 0 signals πΉ πΏ [MeV] Acceptance π·π Full coverage for cos π πΏ to the whole range of πΉ πΏ 1, Aug, 2016 Y. TSUCHIKAWA 12
Yield counting Examples of the fit results The simulated distributions (πΏπ β π 0 π 0 π β π) well reproduce the BG distributions Fit for yield counting: Total (blue) = Gaussian (magenta) + BG dist. (red) 1, Aug, 2016 Y. TSUCHIKAWA 13
Differential Cross Sections π·π : Kaon emission angle in the πΏπ π πΏ center-of-mass frame Legendre fit Angular distribution: Flat -> Backward enhancement This result supports the experimental remark in the previous measurement for the πΏπ β πΏ 0 Ξ reaction reported by K. Tsukada et al. K. Tsukada et al., Phys. Rev. C 83 039904 1, Aug, 2016 Y. TSUCHIKAWA 14
Total Cross Section Comparable to the πΏ + Ξ channel Systematic error (preliminary) Acceptance Geometry in the MC sim. Threshold energies for TDC for Trigger cond. Number of incident photon The target neutron is assumed at rest. Number of target 1, Aug, 2016 Y. TSUCHIKAWA 15
Total Cross Sections Excess? πΈ ππ (π« = ππ πππ) A. Fix et al., Eur. Phys. J. A 32, 311 β 319 (2007). 1, Aug, 2016 Y. TSUCHIKAWA 16
Differential Cross Sections and theoretical curves Kaon-MAID Saclay-Lyon A Legendre fit Compared to two theoretical curves: Kaon-MAID and Saclay-Lyon A Present results favor the SLA model β u-channel Y* contribution may play an important role in the πΉπ β π³ π π³ reaction 1, Aug, 2016 Y. TSUCHIKAWA 17
Summary β’ The πΏπ β πΏ 0 Ξπ photoproduction reaction is studied with electromagnetic calorimeter complex FOREST at ELPH, Sendai ππ β π β 4πΏ ππ β π β’ K 0 signals are well confirmed by πΏπ β πΏ π 0 Ξπ β π 0 π 0 reaction chains with an exclusive analysis β’ Shape of the background shown in the π 0 π 0 invariant mass distribution can be well reproduced by the simulated distribution of πΏπ β π 0 π 0 π β π non-resonant reaction β’ Differential cross sections show backward enhancement as πΉ πΏ increases (This result supports the remark of the previous measurement) β’ Comparison with the theoretical calculations may indicate that the hyperon resonance plays an important role in this reaction at higher energies β’ The total cross section shows comparable order of magnitude to the πΏ + Ξ photoproduction cross section β’ An excess-like structure was observed in the vicinity of 1670 MeV it may be related to the prominent structure observed in the πΏπ β ππ reaction β’ The first measurement for the πΏ 0 Ξ photoproduction proposes new constraints for the theoretical interpretations on the mysterious π 1670 peak structure 1, Aug, 2016 Y. TSUCHIKAWA 18
Recommend
More recommend