zero knowledge arguments
play

Zero-Knowledge Arguments for Arithmetic Circuits Carsten Baum, - PowerPoint PPT Presentation

Sub-Linear Lattice-Based Zero-Knowledge Arguments for Arithmetic Circuits Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafael del Pino, Jens Groth and Vadim Lyubashevsky Lattice-Based Zero-Knowledge Arguments for Arithmetic Circuits 2


  1. Sub-Linear Lattice-Based Zero-Knowledge Arguments for Arithmetic Circuits Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafael del Pino, Jens Groth and Vadim Lyubashevsky

  2. Lattice-Based Zero-Knowledge Arguments for Arithmetic Circuits 2

  3. Lattice-Based Zero-Knowledge Arguments for Arithmetic Circuits Commitment/hash from SIS: = • Binding/collision resistant by SIS • Hiding by Leftover Hash Lemma • Homomorphic • Compressing [A96] 3

  4. Lattice-Based Statement Zero-Knowledge Arguments for Arithmetic Circuits Witness Prover Verifier 4

  5. Lattice-Based Statement Zero-Knowledge Arguments for Arithmetic Circuits Witness Prover Verifier 5

  6. Lattice-Based Statement Zero-Knowledge Arguments for Arithmetic Circuits Completeness: An honest prover Prover Verifier convinces the verifier. 6

  7. Lattice-Based Statement Zero-Knowledge Arguments for Arithmetic Circuits Soundness: A dishonest prover never convinces the verifier. Completeness: An honest prover Prover Verifier Computational guarantee convinces the verifier. -> argument 7

  8. Lattice-Based Statement Zero-Knowledge Arguments for Arithmetic Circuits Knowledge Soundness: The prover must know a witness to convince the Completeness: verifier. An honest prover Prover Verifier -> Proof/argument convinces the verifier. of knowledge 8

  9. Lattice-Based Statement Zero-Knowledge Arguments for Arithmetic Circuits Witness Knowledge Soundness: The prover must know a witness to convince the Completeness: verifier. An honest prover Prover Verifier -> Proof/argument convinces the verifier. Zero-knowledge: of knowledge 9 Nothing but the truth of the statement is revealed.

  10. Lattice-Based Zero-Knowledge Arguments for Arithmetic Circuits 3 Why arithmetic circuits? • C to circuit compilers Statement • Models cryptographic computations • Witness existence? NP-Complete Witness 10

  11. Lattice-Based Statement Zero-Knowledge Arguments for Arithmetic Circuits Interaction Prover Verifier Communication Computation Computation Prover Verifier Cryptographic 11 Assumption

  12. Results Table Expected Communication Prover Verifier # Moves Complexity Complexity [DL12] [BKLP15] This Work 12

  13. Arithmetic Circuit Argument Featured in prior works Arithmetic Circuits DLOG Protocols Information Theoretic Proofs Matrix Equations The interesting parts Extension Fields Polynomials Proof of Knowledge Commitments Rejection Sampling Protocol 13

  14. Proof of Knowledge Statement Witness 14

  15. Proof of Knowledge … 15

  16. Typical Proofs of Knowledge Completeness: Knowledge Soundness: Soundness None for us* Slack 16

  17. Simplistic Protocol P V Rejection Sampling 17

  18. Our Protocol 18

  19. Our Protocol 19

  20. Proof-of-Knowledge Performance Expected Communication Prover Verifier # Moves Complexity Complexity [BDLN16] [CDXY17] This Work This Work 20

  21. Arithmetic Circuit Argument Arithmetic Circuits Matrix Equations Extension Fields Polynomials Proof of Knowledge Commitments Rejection Sampling Protocol 21

  22. High Level Structure L R O 3 5 15 7 5 O = 15 12 180 15 12 5 7 12 + = 180 22

  23. High Level Structure L R O 3 5 15 7 5 O = 15 12 180 15 12 5 7 12 + = 180 23

  24. High Level Structure L R O O = + = 24

  25. High Level Structure L R O O = + = 25

  26. Matrix Dimensions ~√N ~√N ~√N ~√N 26

  27. Paradigm from Previous Arguments 2 6 6 2 0 1 9 2 7 4 5 3 7 2 8 3 6 1 6 9 5 7 6 7 1 4 2 6 8 3 6 3 7 2 7 5 3 2 4 7 5 2 8 7 3 1 0 4 7 3 27

  28. Protocol Flow 1. Commit to wire values P V 2. Commit to polynomial coefficients 3. Commit to mod p correction factors Check size bounds and linear combinations 4. Compute linear combinations, do , Proof of Knowledge rejection sampling, proof of knowledge

  29. Protocol Flow √N √N P V √N √N O(1) √N O(1) , Proof of Knowledge

  30. Parameter Choice q, modulus for SIS Polynomial- binding space for SIS commitments sized gap maximum size of openings from knowledge-extractor maximum size of honest prover committed values p, arithmetic circuits modulo p 30

  31. Additional Issues Schwarz-Zippel Lemma: Not negligible! Negligible! Empty Empty Rubbish Rubbish 31

  32. 32

  33. Thanks! Expected Communication Prover Complexity Verifier Complexity # Moves • General Statements • Sub-linear proofs • Relies on SIS 33

Recommend


More recommend