zero error quantum information theory
play

Zero-error quantum information theory with Gareth Boreland, QUB - PowerPoint PPT Presentation

Zero-error quantum information theory with Gareth Boreland, QUB Rupert Levene, Dublin Vern Paulsen, IQC Waterloo Andreas Winter, Barcelona April 2019, Shanghai Jiao Tong Ivan Todorov QUB Outline (1) The zero-error scenario in information


  1. Zero-error quantum information theory with Gareth Boreland, QUB Rupert Levene, Dublin Vern Paulsen, IQC Waterloo Andreas Winter, Barcelona April 2019, Shanghai Jiao Tong Ivan Todorov QUB

  2. Outline (1) The zero-error scenario in information transmission (2) Zero-error capacity of classical channels (3) The Sandwich Theorem (4) Convex corners (5) Quantum channels and zero-error transmission (6) Non-commutative confusability graphs (7) Non-commutative graph parameters (8) The Quantum Sandwich Theorem Ivan Todorov QUB

  3. The Shannon model Source → Encoder → Channel → Decoder → Target Ivan Todorov QUB

  4. The Shannon model Source → Encoder → Channel → Decoder → Target A channel N transmits symbols from an alphabet X into an alphabet Y : Ivan Todorov QUB

  5. Formalism A channel N : X → Y is a family { ( p ( y | x )) y ∈ Y : x ∈ X } of probability distributions over Y , one for each input symbol x . A zero-error code for N : a subset A ⊆ X such that each symbol from A can be identified unambiguously after its receipt, despite the noise. Equivalently: A ⊆ X such that support ( p ( ·| x )) ∩ support ( p ( ·| x ′ )) = ∅ whenever x , x ′ ∈ A distinct. Ivan Todorov QUB

  6. Formalism A channel N : X → Y is a family { ( p ( y | x )) y ∈ Y : x ∈ X } of probability distributions over Y , one for each input symbol x . A zero-error code for N : a subset A ⊆ X such that each symbol from A can be identified unambiguously after its receipt, despite the noise. Equivalently: A ⊆ X such that support ( p ( ·| x )) ∩ support ( p ( ·| x ′ )) = ∅ whenever x , x ′ ∈ A distinct. The confusability graph G N of N : vertex set: X x ∼ x ′ if support ( p ( ·| x )) ∩ support ( p ( ·| x ′ )) � = ∅ . ( x ∼ x ′ iff ∃ y ∈ Y s.t. p ( y | x ) > 0 and p ( y | x ′ ) > 0) Ivan Todorov QUB

  7. An example A channel (i) and its confusability graph C 5 (ii) Ivan Todorov QUB

  8. One shot zero-error capacity One shot zero-error capacity: the size of a largest zero-error code. Equivalently: the independence number α ( G N ) of the graph G N . Ivan Todorov QUB

  9. One shot zero-error capacity One shot zero-error capacity: the size of a largest zero-error code. Equivalently: the independence number α ( G N ) of the graph G N . By definition, α ( G ) is the largest independent set in G , i.e. the largest set A ⊆ X such that x , x ′ ∈ A , x � = x ′ implies x �∼ x ′ . For C 5 , we have α ( C 5 ) = 2. Ivan Todorov QUB

  10. Product channels N 1 : X 1 → Y 1 , N 2 : X 2 → Y 2 channels. The product channel N 1 × N 2 : X 1 × X 2 → Y 1 × Y 2 is given by p ( y 1 , y 2 | x 1 , x 2 ) = p ( y 1 | x 1 ) p ( y 2 | x 2 ) . Ivan Todorov QUB

  11. Product channels N 1 : X 1 → Y 1 , N 2 : X 2 → Y 2 channels. The product channel N 1 × N 2 : X 1 × X 2 → Y 1 × Y 2 is given by p ( y 1 , y 2 | x 1 , x 2 ) = p ( y 1 | x 1 ) p ( y 2 | x 2 ) . G N 1 ×N 2 = G N 1 ⊠ G N 2 G 1 ⊠ G 2 : the strong graph product: vertex set: X 1 × X 2 ( x 1 , x 2 ) ≃ ( x ′ 1 , x ′ 2 ) if x 1 ≃ x ′ 1 and x 2 ≃ x ′ 2 . Ivan Todorov QUB

  12. Parallel repetition and zero-error capacity Parallel repetition of N : forming products N × n , n = 1 , 2 , 3 , . . . . The zero-error capacity � � � G ⊠ n c 0 ( N ) = lim n α . N n →∞ Note: The limit exists due to the fact that α ( G 1 ⊠ G 2 ) ≥ α ( G 1 ) α ( G 2 ). Ivan Todorov QUB

  13. Parallel repetition and zero-error capacity Parallel repetition of N : forming products N × n , n = 1 , 2 , 3 , . . . . The zero-error capacity � � � G ⊠ n c 0 ( N ) = lim n α . N n →∞ Note: The limit exists due to the fact that α ( G 1 ⊠ G 2 ) ≥ α ( G 1 ) α ( G 2 ). Strict inequality may occur � you can do better on the average by using N repeatedly. Question: What is c 0 ( C 5 )? Ivan Todorov QUB

  14. The Lov´ asz number √ Answer (Lov´ asz, 1979): c 0 ( C 5 ) = 5. Method: Introduced a parameter θ ( G ) such that α ( G ) ≤ θ ( G ) and θ ( G 1 ⊠ G 2 ) = θ ( G 1 ) θ ( G 2 ). Ivan Todorov QUB

  15. The Lov´ asz number √ Answer (Lov´ asz, 1979): c 0 ( C 5 ) = 5. Method: Introduced a parameter θ ( G ) such that α ( G ) ≤ θ ( G ) and θ ( G 1 ⊠ G 2 ) = θ ( G 1 ) θ ( G 2 ). The inequality θ ( G 1 ⊠ G 2 ) ≤ θ ( G 1 ) θ ( G 2 ) alone will then give c 0 ( G ) ≤ θ ( G ). Note: θ ( G ) remains the best general computable bound for c 0 ( G ). Ivan Todorov QUB

  16. The Lov´ asz number G a graph with vertex set X , | X | = d . For A ⊆ R d + , let A ♭ = { b ∈ R d + : � b , a � ≤ 1 , ∀ a ∈ A} . Ivan Todorov QUB

  17. The Lov´ asz number G a graph with vertex set X , | X | = d . For A ⊆ R d + , let A ♭ = { b ∈ R d + : � b , a � ≤ 1 , ∀ a ∈ A} . Orthogonal labelling (o.l.): a family ( a x ) x ∈ X of unit vectors s.t. x �≃ y ⇒ a x ⊥ a y . �� � |� a x , c �| 2 � P 0 ( G ) = x ∈ X : ( a x ) x ∈ X o.l. and � c � ≤ 1 . thab ( G ) = P 0 ( G ) ♭ The Lov´ asz number �� � x ∈ X λ x : ( λ x ) x ∈ X ∈ thab ( G ) θ ( G ) = max . Ivan Todorov QUB

  18. The Lov´ asz number G a graph with vertex set X , | X | = d . For A ⊆ R d + , let A ♭ = { b ∈ R d + : � b , a � ≤ 1 , ∀ a ∈ A} . Orthogonal labelling (o.l.): a family ( a x ) x ∈ X of unit vectors s.t. x �≃ y ⇒ a x ⊥ a y . �� � |� a x , c �| 2 � P 0 ( G ) = x ∈ X : ( a x ) x ∈ X o.l. and � c � ≤ 1 . thab ( G ) = P 0 ( G ) ♭ The Lov´ asz number �� � x ∈ X λ x : ( λ x ) x ∈ X ∈ thab ( G ) θ ( G ) = max . 1 Equivalently: θ ( G ) = min c max x ∈ X |� a x , c �| 2 Ivan Todorov QUB

  19. The Lov´ asz Sandwich Theorem α ( G ) ≤ c 0 ( G ) ≤ θ ( G ) ≤ χ f ( ¯ G ). χ f ( ¯ G ): the fractional chromatic number of the complement of G . �� � x ∈ X λ x : � χ f ( G ) = max x ∈ K λ x ≤ 1 , ∀ clique K Ivan Todorov QUB

  20. The Lov´ asz Sandwich Theorem α ( G ) ≤ c 0 ( G ) ≤ θ ( G ) ≤ χ f ( ¯ G ). χ f ( ¯ G ): the fractional chromatic number of the complement of G . �� � x ∈ X λ x : � χ f ( G ) = max x ∈ K λ x ≤ 1 , ∀ clique K The Strong Sandwich Theorem vp ( G ) ⊆ thab ( G ) ⊆ fvp ( G ) . vp ( G ) = conv { χ S : S ⊆ X independent set } fvp ( G ) = conv { χ K : K ⊆ X clique } ♭ vp ( G ), thab ( G ) and fvp ( G ) are convex corners. Ivan Todorov QUB

  21. Convex corners and dualities Convex corner A ⊆ R d + : convex, closed, hereditary (Hereditary: a ∈ A , 0 ≤ b ≤ a ⇒ b ∈ A .) Ivan Todorov QUB

  22. Convex corners and dualities Convex corner A ⊆ R d + : convex, closed, hereditary (Hereditary: a ∈ A , 0 ≤ b ≤ a ⇒ b ∈ A .) vp and fvp are dual to each other vp ( G ) ♭ = fvp ( ¯ G ) thab is self-dual thab ( G ) ♭ = thab ( ¯ G ) Second anti-blocker theorem If A ⊆ R d + is a convex corner then A ♭♭ = A . Ivan Todorov QUB

  23. From classical to quantum Replace C d by M d . M d – the algebra of all d × d complex matrices; ( E x , x ′ ) x , x ′ ∈ X matrix units. Trace Tr (( λ x , y )) = � x ∈ X λ x ; Inner product ( A , B ) = Tr ( B ∗ A ); Duality � A , B � = Tr ( AB ), making it into a self-dual space; Positivity A ≥ 0 if ( A ξ, ξ ) ≥ 0 , ∀ ξ . Ivan Todorov QUB

  24. From classical to quantum Replace C d by M d . M d – the algebra of all d × d complex matrices; ( E x , x ′ ) x , x ′ ∈ X matrix units. Trace Tr (( λ x , y )) = � x ∈ X λ x ; Inner product ( A , B ) = Tr ( B ∗ A ); Duality � A , B � = Tr ( AB ), making it into a self-dual space; Positivity A ≥ 0 if ( A ξ, ξ ) ≥ 0 , ∀ ξ . Let D X ⊆ M d be the subalgebra of all diagonal matrices. Going from classical to quantum, we move from D X to M d , and from sets to projections. Ivan Todorov QUB

  25. Quantum channels Classical channels revisited: N = { ( p ( y | x )) y ∈ Y : x ∈ X } . Here, p ( y | x ) ≥ 0 and � y ∈ Y p ( y | x ) = 1, for all x ∈ X . Let Φ N : D X → D Y be the linear map � Φ N ( E x , x ) = p ( y | x ) E y , y . y ∈ Y Φ N is positive: A ≥ 0 ⇒ Φ N ( A ) ≥ 0. Φ N is trace preserving: Tr (Φ N ( A )) = Tr ( A ). Ivan Todorov QUB

  26. Quantum channels Classical channels revisited: N = { ( p ( y | x )) y ∈ Y : x ∈ X } . Here, p ( y | x ) ≥ 0 and � y ∈ Y p ( y | x ) = 1, for all x ∈ X . Let Φ N : D X → D Y be the linear map � Φ N ( E x , x ) = p ( y | x ) E y , y . y ∈ Y Φ N is positive: A ≥ 0 ⇒ Φ N ( A ) ≥ 0. Φ N is trace preserving: Tr (Φ N ( A )) = Tr ( A ). Quantum channel Φ : M d → M k linear, completely positive, trace preserving. Completely positive: Φ ⊗ id d : M d ⊗ M d → M k ⊗ M d is positive. Ivan Todorov QUB

  27. Kraus representation The representation theorem Let Φ : M d → M k be a linear map. The following are equivalent: Φ is a quantum channel; there exist A p : C d → C k , p = 1 , . . . , r , such that r � A p TA ∗ Φ( T ) = T ∈ M d , p , p =1 and � r A ∗ p A p = I . p =1 Ivan Todorov QUB

Recommend


More recommend