xtoaxaca extending the kitagawa oaxaca blinder
play

xtoaxaca - Extending the Kitagawa-Oaxaca-Blinder Decomposition - PowerPoint PPT Presentation

xtoaxaca - Extending the Kitagawa-Oaxaca-Blinder Decomposition Approach to longitudinal data analyses Hannes Kr oger, J org Hartmann German Institute for Economic Research (DIW), Berlin University of G ottingen 24.05.2019 1 / 27 Who


  1. xtoaxaca - Extending the Kitagawa-Oaxaca-Blinder Decomposition Approach to longitudinal data analyses Hannes Kr¨ oger, J¨ org Hartmann German Institute for Economic Research (DIW), Berlin University of G¨ ottingen 24.05.2019 1 / 27

  2. Who would benefit from using xtoaxaca You have at least two time points You want a flexible way to decompose the level over time You want a (counterfactual) decomposition of change over time 2 / 27

  3. Prior approaches Based on different research questions very many different decompositions can be chosen At the moment we cannot make a systematic comparison We present our preferred solution 3 / 27

  4. Traditional approach Kitagawa-Oaxaca-Blinder decomposition R = E ( Y A ) − E ( Y B ) 4 / 27

  5. Traditional approach Kitagawa-Oaxaca-Blinder decomposition R = E ( Y A ) − E ( Y B ) Y l = X l β l + ǫ l , E ( ǫ l ) = 0 , l ∈ { A , B } 4 / 27

  6. Traditional approach Kitagawa-Oaxaca-Blinder decomposition R = E ( Y A ) − E ( Y B ) Y l = X l β l + ǫ l , E ( ǫ l ) = 0 , l ∈ { A , B } R = E + C + I R = [ E ( X B ) − E ( X A )] β A + E ( X A )( β B − β A ) + [ E ( X B ) − E ( X A )]( β B − β A ) 4 / 27

  7. Traditional approach Kitagawa-Oaxaca-Blinder decomposition R = E ( Y A ) − E ( Y B ) Y l = X l β l + ǫ l , E ( ǫ l ) = 0 , l ∈ { A , B } R = E + C + I R = [ E ( X B ) − E ( X A )] β A + E ( X A )( β B − β A ) + [ E ( X B ) − E ( X A )]( β B − β A ) 4 / 27

  8. Traditional approach Kitagawa-Oaxaca-Blinder decomposition R = E ( Y A ) − E ( Y B ) Y l = X l β l + ǫ l , E ( ǫ l ) = 0 , l ∈ { A , B } R = E + C + I R = [ E ( X B ) − E ( X A )] β A + E ( X A )( β B − β A ) + [ E ( X B ) − E ( X A )]( β B − β A ) 4 / 27

  9. Traditional approach Kitagawa-Oaxaca-Blinder decomposition R = E ( Y A ) − E ( Y B ) Y l = X l β l + ǫ l , E ( ǫ l ) = 0 , l ∈ { A , B } R = E + C + I R = [ E ( X B ) − E ( X A )] β A + E ( X A )( β B − β A ) + [ E ( X B ) − E ( X A )]( β B − β A ) 4 / 27

  10. Research questions for the parts of the decomposition E : How much smaller/bigger would the gap be, if the endowments of group A were the same as for group B? 5 / 27

  11. Research questions for the parts of the decomposition E : How much smaller/bigger would the gap be, if the endowments of group A were the same as for group B? C : How much smaller/bigger would the gap be, if the effect of the explanatory variables of group A were the same as the effects for group B? 5 / 27

  12. GC prediction approach R ( t ) = E ( Y B ( t ) − Y A ( t )) Latent growth curve model for change in happiness parametric, semi-parametric, non-parametric 6 / 27

  13. Predictions of happiness 8 7.5 7 6.5 6 5.5 5 4.5 4 1 2 3 4 5 6 7 8 9 10 Time High education Low education Low education - High E Low education - High E+C 95%-CI

  14. Counterfactual predictions of happiness 8 7.5 7 6.5 6 5.5 5 4.5 4 1 2 3 4 5 6 7 8 9 10 Time High education Low education Low education - High E Low education - High E+C 95%-CI

  15. Counterfactual predictions of happiness 8 7.5 7 6.5 6 5.5 5 4.5 4 1 2 3 4 5 6 7 8 9 10 Time High education Low education Low education - High E Low education - High E+C 95%-CI

  16. Predictions of happiness 8 7.5 7 6.5 6 5.5 5 4.5 4 1 2 3 4 5 6 7 8 9 10 Time High education Low education Low education - High E Low education - High E+C 95%-CI

  17. Counterfactual predictions of happiness 8 7.5 7 6.5 6 5.5 5 4.5 4 1 2 3 4 5 6 7 8 9 10 Time High education Low education Low education - High E Low education - High E+C 95%-CI

  18. Counterfactual predictions of happiness 8 7.5 7 6.5 6 5.5 5 4.5 4 1 2 3 4 5 6 7 8 9 10 Time High education Low education Low education - High E Low education - High E+C 95%-CI

  19. GC decomposition approach R ( t ) = E ( t ) + C ( t ) + I ( t ) Decomposition is time dependent 13 / 27

  20. GC decomposition approach R ( t ) = E ( t ) + C ( t ) + I ( t ) Decomposition is time dependent R = [ E ( X ht ) − E ( X lt )] β lt + E ( X lt )( β ht − β lt ) + [ E ( X ht ) − E ( X lt )]( β ht − β lt ) Conditional on functional form of time 13 / 27

  21. GC decomposition approach R ( t ) = E ( t ) + C ( t ) + I ( t ) Decomposition is time dependent R = [ E ( X ht ) − E ( X lt )] β lt + E ( X lt )( β ht − β lt ) + [ E ( X ht ) − E ( X lt )]( β ht − β lt ) Conditional on functional form of time 13 / 27

  22. GC decomposition approach R ( t ) = E ( t ) + C ( t ) + I ( t ) Decomposition is time dependent R = [ E ( X ht ) − E ( X lt )] β lt + E ( X lt )( β ht − β lt ) + [ E ( X ht ) − E ( X lt )]( β ht − β lt ) Conditional on functional form of time 13 / 27

  23. GC decomposition approach R ( t ) = E ( t ) + C ( t ) + I ( t ) Decomposition is time dependent R = [ E ( X ht ) − E ( X lt )] β lt + E ( X lt )( β ht − β lt ) + [ E ( X ht ) − E ( X lt )]( β ht − β lt ) Conditional on functional form of time 13 / 27

  24. Decomposition of change Decomposing the change in happiness it always needs two time points to compare 14 / 27

  25. Decomposition of change ∆ Y l = Y l t − Y l s = ¯ t − ¯ X l t β l X l s β l s 15 / 27

  26. Decomposition of change ∆ Y l = Y l t − Y l s = ¯ t − ¯ X l t β l X l s β l s and the change of the group difference over time then is ∆ Y = ∆ Y A − ∆ Y B = ( ¯ t − ¯ s ) − ( ¯ t − ¯ X A t β A X A s β A X B t β B X B s β B s ) = ¯ t − ¯ s − ¯ t + ¯ X A t β A X A s β A X B t β B X B s β B s 15 / 27

  27. Change due to endowment ∆ Y E = ( ¯ t − ¯ s − ( ¯ t − ¯ X A X A s ) β A X B X B s ) β B s 16 / 27

  28. Change due to endowment ∆ Y E = ( ¯ t − ¯ s − ( ¯ t − ¯ X A X A s ) β A X B X B s ) β B s 16 / 27

  29. Change due to coefficients s ) ¯ s ) ¯ ∆ Y C = ( β A t − β A X A s − ( β B t − β B X B s 17 / 27

  30. Change due to coefficients s ) ¯ s ) ¯ ∆ Y C = ( β A t − β A X A s − ( β B t − β B X B s 17 / 27

  31. Research questions for the parts of the decomposition dE : How much smaller/bigger would the change in the gap be, if the endowments of group A had changed in the same way as for group B (and the difference in coefficients had stayed the same)? 18 / 27

  32. Research questions for the parts of the decomposition dE : How much smaller/bigger would the change in the gap be, if the endowments of group A had changed in the same way as for group B (and the difference in coefficients had stayed the same)? dC : How much smaller/bigger would the change in the gap be, if the coefficients of group A had changed in the same way as for group B (and the difference in endowments had stayed the same)? 18 / 27

  33. Choose data, model and estimator

  34. Choose data, model and estimator Group, time, decomposition Data Stored estimates variables and time points

  35. Choose data, model and estimator Group, time, decomposition Data Stored estimates variables and time points margins mean xtoaxaca β (g,t) E(X(g,t))

  36. Choose data, model and estimator Group, time, decomposition Data Stored estimates variables and time points margins mean xtoaxaca β (g,t) E(X(g,t)) Level Change

  37. Quick note on the use of margins all decompositions are done at means or other specified values calculation of average over the population not necessary margins conducted only on one observation speed of the calculation of margins (not mean ) independent of sample size 23 / 27

  38. xtoaxaca in action xtoaxaca exp, groupvar(group2) groupcat(1 2) timevar(time) times(1 3 5 ) /// model1(base) model2(control) /// timebandwidth(1) basecontrols(edu) change timeref(1) 24 / 27

  39. xtoaxaca in action xtoaxaca exp, groupvar(group2) groupcat(1 2) timevar(time) times(1 3 5 ) /// model1(base) model2(control) /// timebandwidth(1) basecontrols(edu) change timeref(1) 24 / 27

  40. xtoaxaca in action xtoaxaca exp, groupvar(group2) groupcat(1 2) timevar(time) times(1 3 5 ) /// model1(base) model2(control) /// timebandwidth(1) basecontrols(edu) change timeref(1) 24 / 27

  41. xtoaxaca in action xtoaxaca exp, groupvar(group2) groupcat(1 2) timevar(time) times(1 3 5 ) /// model1(base) model2(control) /// timebandwidth(1) basecontrols(edu) change timeref(1) 24 / 27

  42. xtoaxaca in action xtoaxaca exp, groupvar(group2) groupcat(1 2) timevar(time) times(1 3 5 ) /// model1(base) model2(control) /// timebandwidth(1) basecontrols(edu) change timeref(1) 24 / 27

  43. xtoaxaca in action xtoaxaca exp, groupvar(group2) groupcat(1 2) timevar(time) times(1 3 5 ) /// model1(base) model2(control) /// timebandwidth(1) basecontrols(edu) change timeref(1) 24 / 27

  44. xtoaxaca in action xtoaxaca exp, groupvar(group2) groupcat(1 2) timevar(time) times(1 3 5 ) /// model1(base) model2(control) /// timebandwidth(1) basecontrols(edu) change timeref(1) 24 / 27

  45. xtoaxaca in action xtoaxaca exp, groupvar(group2) groupcat(1 2) timevar(time) times(1 3 5 ) /// model1(base) model2(control) /// timebandwidth(1) basecontrols(edu) change timeref(1) 24 / 27

  46. xtoaxaca in action xtoaxaca exp, groupvar(group2) groupcat(1 2) timevar(time) times(1 3 5 ) /// model1(base) model2(control) /// timebandwidth(1) basecontrols(edu) change timeref(1) 24 / 27

Recommend


More recommend