X 1 ILC : PHYSICS FROM TERA- TO PLANCK-SCALE 1. Introduction X – Physics base and perspectives 2. ILC Physics Targets in Micro-Universe X – Electroweak Symmetry Breaking X – Ultimate Unification / Supersymmetry X – Extra Space Dimensions 3. Cosmology Connection 4. Conclusions
1. INTRODUCTION Basic laws of Nature ∼ 10 − 15 cm : Standard Model of particle physics ⊕ Gravity Central problems in micro-Universe ... AA – Mechanism of electroweak symmetry breaking X X ⇐ Higgs or alternative ? AA – Unification of forces - including gravity AAA X X ⇐ Supersymmetry ? AA – Space-time structure at short distances AAA X X ⇐ Dimensions > 4 ? ... and macro-Universe AA – Connection with cosmology AAA AAA AAA AAA ⇐ Cold Dark Matter? ⇐ Baryon Asymmetry? ⇐ ... X 2
TARGETS ⇐ LHC and ILC break-through discovery and high-resolution picture of Terascale scenario ⇒ unification of matter and interactions canonical path: Standard Model | Supersymmetry ⇒ GUT/Planck Scenario alternative: Standard Model ⇒ Extra Space Dims : stdd | TeV Planck Scenario SCENARIOS : – generally not without tension but: – representative for extended classes [MSSM ∼ SUSY] – prove comprehensive coverage of theoretical glacis [weak ... strong elwSB] LITERATURE : “Physics Chapter of RDR” : A.Djouadi, J.Lykken, K.M¨ onig, Y.Okada, M.Oreglia, S.Yamashita “Scenarios for ILC in 2010” : F.Richard, arXiv:0707.3723 [hep-ph] “Snowmass ILC Report / LCWS07” : Kilian, Z: hep-ph/0601217 X 3A
TARGETS ⇐ LHC and ILC break-through discovery and high-resolution picture of Terascale scenario ⇒ unification of matter and interactions canonical path: Standard Model | Supersymmetry ⇒ GUT/Planck Scenario alternative: Standard Model ⇒ Extra Space Dimens : stdd | TeV Planck Scenario BASE OF TALK : ... central physics targets of ILC : √ s = 500 GeV | upgrade = 1 TeV e − / 90 [ e + / 60] polarization e − e − | eγ/γγ | GigaZ LITERATURE : “Physics Chapter of RDR” : A.Djouadi, J.Lykken, K.M¨ onig, Y.Okada, M.Oreglia, S.Yamashita “Scenarios for ILC in 2010” : F.Richard, arXiv:0707.3723 [hep-ph] “Snowmass ILC Report / LCWS07” : Kilian, Z: hep-ph/0601217 X 3B
XXX 2A. ELECTROWEAK SYMMETRY BREAKING 4 – missing keystone of Standard Model – indicator of physics landscape beyond SM realizations: standard wk Higgs mechanism [ SM, SUSY, ... ] ⇓ strong elw symmetry breaking [ Little Higgs, strong WW, ... ] ⇑ topology extra space dim [ H ∼ 5th gauge field, BC : higgsless, ... ] m Limit = 144 GeV 6 Theory uncertainty a) SM HIGGS MECHANISM ∆α (5) ∆α had = 5 0.02758 ± 0.00035 0.02749 ± 0.00012 a) – light Higgs: suggested by precision data [EWWG: 4 incl. low Q 2 data ∆χ 2 3 M H = 76 +33 − 24 GeV | < 144 GeV (95% CL) 2 1 a) – probability 15% Excluded Preliminary 0 30 100 300 m H [ GeV ]
XXX 2A. ELECTROWEAK SYMMETRY BREAKING 4 – missing keystone of Standard Model – indicator of physics landscape beyond SM realizations: standard wk Higgs mechanism [ SM, SUSY, ... ] ⇓ strong elw symmetry breaking [ Little Higgs, strong WW, ... ] ⇑ topology extra space dim a) SM HIGGS MECHANISM a) – light Higgs: suggested by precision data digression: a) – ⇒ 110 +8 − 10 ± 3 GeV in mSUGRA X Buchm¨ uller ea
X Three central questions ⇐ after Higgs discovery at LHC XX 1. Higgs field filling vacuum ⇒ scalar field XX ⋆ 2. mass generation by Higgs interaction ⇒ Higgs coupling prop mass XX ⋆ 3. elw symmetry breaking : Higgs potential ⇒ non-zero vacuum value X (1) Higgs = fundamental scalar : Higgs-strahlung near threshold: 15 σ [ e + e − → ZH ] ∼ cross section (fb) p s − ( m H + m Z ) 2 J=0 10 J=1 ruling out : 0 − , 1 − , 2 − , 3 ± , ... J=2 5 1 + , 2 + no TL ang correl 0 210 220 230 240 250 Miller,D.J. ea AAA s (GeV) AAA Lohmann ea AAA 5A
2 central questions (2) Higgs couplings to SM particles : Coupling - Mass R e l a tion Higgs coupling – mass relation: Coupling con s t a nt to Higg s bo s on ( κ ι ) √ H t 1 p g ( Hpp ) = 2 2 G F m p W Z ⇐ proving mass generation by inter- 0 . 1 action with Higgs field b Higgs-strahlung : e + e − → ZH c τ 0 . 01 WW fusion XX : e + e − → ννH 1 10 100 ⇒ production cross sections Mass (GeV) AAA ACFA LC Study ⇒ decay branching ratios AAA improving on LHC significantly: ⇒ Higgs radiation off top AAA precision and model-indep slope ∼ strg BSM scale 2 .. 3 TeV AAA /Z/W/τ/b/t/ = / 1 / 1 / 3 / 2 / 2% ∼ univ 0 + mix [radion] AAA 5B
XXX (3) Higgs potential 6A elw SB ⇐ non-zero Higgs field v generated by shifted min of potential : V = λ [ | φ | 2 − 1 2 v 2 ] 2 √ φ = ( v + H ) / 2 self-interaction : M 2 M 2 H H 2 + 1 H 3 + 1 V = 1 2 M 2 v 2 H 4 H H v 2 8 trilin coupling ⇒ bending of potential ⇒ shift of minimum XX measurement: e + e − → ZHH e + e − → ννHH √ s = 1 TeV : 12% BSM H sector ∼ 1 TeV LHC → SLHC for MH > 140 GeV
✄ � ✁ ✂ ✂ ☎ ✁ ✁ � ✁ ✁ � � ✁ ✁ � � XXX (3) Higgs potential 6B elw SB ⇐ non-zero Higgs field v generated by shifted min of potential : V = λ [ | φ | 2 − 1 2 v 2 ] 2 √ φ = ( v + H ) / 2 self-interaction : M 2 M 2 H H 2 + 1 H 3 + 1 V = 1 2 M 2 v 2 H 4 H H v 2 8 0.3 trilin coupling ⇒ bending of potential SM Double Higgs-strahlung: e + e - → ZHH σ [ fb ] ⇒ shift of minimum 0.2 ● measurement: e + e − → ZHH √ s = 800 GeV ● e + e − → ννHH 0.1 ● √ s = 500 GeV √ s = 1 TeV : 12% 0 100 120 140 160 180 BSM H sector ∼ 1 TeV M H [ GeV ] uhlleitner ea | Gay | Yamashita (ea) LHC → SLHC for MH > 140 GeV M¨
AAA 7B b) SUSY HIGGS BOSONS Higgs sector extended to 2 doublets ⇒ 5 physical particles in MSSM : h 0 light ≤ 140 GeV | generically < 200 GeV H 0 , A 0 , H ± typically v to 1 TeV detection at LHC: blind wedge ILC: pairs /w mass up to E B [Desch ea] 250 50 tan β -1 ATLAS ATLAS ATLAS - 300 fb 40 maximal mixing 225 HA → 4b - Signal 30 200 + 0 0 0 - h H A H 20 4-fermion 175 + - number of entries 0 2-fermion h H 0 0 0 h H A 150 10 - tt 9 8 125 7 6 0 h only 5 100 4 LEP 2000 75 0 0 3 h H LEP excluded 50 2 + + - 0 0 0 - 0 h H h H A H 25 0 1 350 400 450 500 550 600 650 700 750 800 50 100 150 200 250 300 350 400 450 500 reconstructed mass sum [ GeV ] m A (GeV)
AAA 7C b) SUSY HIGGS BOSONS Higgs sector extended to 2 doublets ⇒ 5 physical particles in MSSM : h 0 light ≤ 140 GeV H 0 , A 0 , H ± typically v to 1 TeV detection at LHC: blind wedge γγ → H, A : +50% g [M¨ uhlleitner ea, Gunion ea, X F: Niezurawski ea ] A 50 tan β -1 ATLAS ATLAS ATLAS - 300 fb 40 maximal mixing 30 + 0 0 0 - h H A H 20 + 0 - h H 0 0 0 h H A 10 9 8 7 6 0 h only 5 4 LEP 2000 0 0 3 h H LEP excluded 2 + + 0 0 0 - 0 - h H A H h H 1 50 100 150 200 250 300 350 400 450 500 m A (GeV)
AAA 8A SUSY EXTENSIONS : CP Violation : 130 H 1 , H 2 masses [ GeV ] 125 h 0 , H 0 mix A 0 ⇒ H 0 1 , H 0 2 , H 0 CPX scenario 120 3 tan β = 5 115 ∧ M H + = 150 GeV – changing spectra and production 110 M SUSY = 1 TeV 105 F: Carena ea 100 95 – CP : ττ polarization 90 85 asymmetry in circularly pol γγ 80 -125 -100 -75 -50 -25 0 25 50 75 100 125 arg (A t ) = arg (A b ) [ deg ] (a) H3ZZ 1 , g 2 g 2 USSM, NMSSM, etc : H1ZZ H2ZZ , g 2 g 2 – additional (light) singlets: H1ZZ H3ZZ g 2 -1 h 0 , H 0 ⊕ H ′ 0 ⇒ H 0 10 1 , H 0 2 , H 0 3 g 2 A 0 ⊕ A ′ 0 ⇒ A 0 1 , A 0 H2ZZ 2 F: Miller,D.J. ea -2 10 -125 -100 -75 -50 -25 0 25 50 75 100 125 arg (A t ) = arg (A b ) [ deg ] (b)
AAA 8B SUSY EXTENSIONS : CP Violation : h 0 , H 0 mix A 0 ⇒ H 0 1 , H 0 2 , H 0 3 – changing spectra and production F: Carena ea – CP : ττ polarization asymmetry in circularly pol γγ USSM, NMSSM, etc : – additional (light) singlets: h 0 , H 0 ⊕ H ′ 0 ⇒ H 0 1 , H 0 2 , H 0 3 A 0 ⊕ A ′ 0 ⇒ A 0 1 , A 0 2 F: Miller ea
AAA 9A c) STRONG ELW SYMMETRY BREAKING new strong interaction sector: global symmetry breaking ⇒ [pseudo-] Goldstone bosons ∼ Higgs particles LITTLE HIGGS THEORIES large global symmetry group | f ∼ TeV : 10 4 √ s = 800 GeV e − e + → t ¯ tb ¯ b rich spectrum of TeV particles L = 1 ab − 1 � 1000 #evt / 2 GeV plus light Higgs sector g ttη = 0.2 m η = 50 GeV pseudoscalar η : e + e − → t ¯ 100 t η | η → b ¯ b 100 150 X F: Kilian, Rainwater, ReuterX 10 parameters : e + e − → f ¯ f and Z h 0 50 100 150 b ) [GeV] M inv ( b ¯ almost completely covered
Recommend
More recommend