working principle of a semiconductor based solar cell
play

Working Principle of a Semiconductor Based Solar Cell Semiconductor - PowerPoint PPT Presentation

Working Principle of a Semiconductor Based Solar Cell Semiconductor Junction II - The Solar Cell Week 2.4.2 Arno Smets Semiconductor Junction Thermal Equillibrium No net current - - - - + + + + - - - - + + + + p region n


  1. Working Principle of a Semiconductor Based Solar Cell Semiconductor Junction II - The Solar Cell Week 2.4.2 Arno Smets

  2. Semiconductor Junction – Thermal Equillibrium No net current - - - - + + + + - - - - + + + + p region n region - - - - + + + + + + + + - - - - + + + + - - - - Electron Diffusion J e = qD e dn/dx J e = nq  e E Electron Drift Hole Diffusion J h = qD h dp/dx J h = pq  h E Hole Drift

  3. Semiconductor Junction – Forward Bias Field reduced - + - - - - + + + + - - - - + + + + p region n region - - - - + + + + + + + + - - - - + + + + - - - - Electron Diffusion J e = qD e dn/dx J e = nq  e E Electron Drift Hole Diffusion J h = qD h dp/dx J h = pq  h E Hole Drift

  4. Semiconductor Junction – Forward Bias Field reduced Net - + current! - - - - + + + + - - - - + + + + p region n region - - - - + + + + + + + + - - - - + + + + - - - - Electron Diffusion J e = qD e dn/dx J e = nq  e E Electron Drift Hole Diffusion J h = qD h dp/dx J h = pq  h E Hole Drift

  5. diffusion drift E F E F diffusion drift

  6. diffusion drift E F E F diffusion drift

  7. diffusion drift E F E F diffusion drift

  8. diffusion drift E F qV E F diffusion drift

  9. Semiconductor Junction – Reverse Bias Field increased - + - - - - + + + + - - - - + + + + p region n region - - - - + + + + + + + + - - - - + + + + - - - - Electron Diffusion J e = qD e dn/dx J e = nq  e E Electron Drift Hole Diffusion J h = qD h dp/dx J h = pq  h E Hole Drift

  10. Semiconductor Junction – Reverse Bias Extremely Field increased - + Small Net current! - - - - + + + + - - - - + + + + p region n region - - - - + + + + + + + + - - - - + + + + - - - - Electron Diffusion J e = qD e dn/dx J e = nq  e E Electron Drift Hole Diffusion J h = qD h dp/dx J h = pq  h E Hole Drift

  11. Semiconductor Junction – under illumination - - - - + + + + - - - - + + + + p region n region - - - - + + + + + + + + - - - - + + + + - - - - Electron Diffusion J e = qD e dn/dx J e = nq  e E Electron Drift Hole Diffusion J h = qD h dp/dx J h = pq  h E Hole Drift

  12. Semiconductor Junction – under illumination - - - - + + + + - - - - + + + + p region n region - - - - + + + + + + + + - - - - + + + + - - - - Electron Diffusion J e = qD e dn/dx J e = nq  e E Electron Drift Hole Diffusion J h = qD h dp/dx J h = pq  h E Hole Drift

  13. Short Circuit - - - - + + + + - - - - + + + + p region n region - - - - + + + + + + + + - - - - + + + + - - - -

  14. Open Circuit V E Field - - - - + + + + - - - - + + + + p region n region - - - - + + + + + + + + - - - - + + + + - - - -

  15. p-n junction Solar Cells Three essential steps required for the operation of a solar cell: 1. Generation of electron-hole pairs in the cell 2. Separation of electron and hole at the junction 3. Collection of electrons and holes at the terminals

  16. Thank you for your attention!

Recommend


More recommend