weak unit disk contact representations for graphs without
play

Weak Unit Disk Contact Representations for Graphs without Embedding - PowerPoint PPT Presentation

Weak Unit Disk Contact Representations for Graphs without Embedding Jonas Cleve, Freie Universitt Berlin EuroCG 2020 March 1618 Wrzburg, Germany Unit Disk Contact Representations Unit disk contact representation (UDCR) of G = ( V ,


  1. Weak Unit Disk Contact Representations for Graphs without Embedding Jonas Cleve, Freie Universität Berlin EuroCG 2020 – March 16–18 – Würzburg, Germany

  2. Unit Disk Contact Representations Unit disk contact representation (UDCR) of G = ( V , E ): graph G 1 2 3 4 5 6 7 8 1

  3. Unit Disk Contact Representations 8 8 7 6 5 4 3 2 1 7 Unit disk contact representation (UDCR) of G = ( V , E ): 6 5 4 3 2 1 • one unit-disk D ( v ) per node v s. t. graph G 1

  4. Unit Disk Contact Representations 7 8 7 6 5 4 3 2 1 8 6 Unit disk contact representation (UDCR) of G = ( V , E ): 5 4 3 2 1 UDCR of G • one unit-disk D ( v ) per node v s. t. graph G 1 • { u , v } ∈ E ⇐ ⇒ D ( u ), D ( v ) touch .

  5. Unit Disk Contact Representations 2 8 7 6 5 4 3 2 1 8 7 6 5 4 3 1 Unit disk contact representation (UDCR) of G = ( V , E ): 8 7 6 5 4 3 2 1 No embedding: neighbor order can be chosen arbitrarily UDCRs of G • one unit-disk D ( v ) per node v s. t. graph G 1 • { u , v } ∈ E ⇐ ⇒ D ( u ), D ( v ) touch .

  6. Unit Disk Contact Representations 7 8 1 2 3 4 5 6 8 6 1 2 3 4 7 8 5 6 7 5 Unit disk contact representation (UDCR) of G = ( V , E ): 4 graph G • one unit-disk D ( v ) per node v s. t. UDCRs of G No embedding: neighbor order can be chosen arbitrarily 1 2 3 4 5 6 7 8 1 2 3 1 • { u , v } ∈ E ⇐ ⇒ D ( u ), D ( v ) touch .

  7. Unit Disk Contact Representations 2 3 4 5 6 7 8 1 3 graph G 4 7 8 5 6 Weak unit disk contact representation (WUDCR) of G = ( V , E ): WUDCRs of G 2 1 8 7 • one unit-disk D ( v ) per node v s. t. No embedding: neighbor order can be chosen arbitrarily 1 2 3 4 5 6 7 8 1 2 3 4 5 6 1 • { u , v } ∈ E = ⇒ D ( u ), D ( v ) touch .

  8. Results Existing Work: NP-hardness and construction algorithms. star caterpillar tree Weak UDCR Weak Emb. UDCR Chiu, Cleve, Nöllenburg; 2019 Cleve; 2020 Cleve; 2020 2

  9. Results Existing Work: NP-hardness and construction algorithms. star caterpillar tree Weak UDCR Weak Emb. UDCR Chiu, Cleve, Nöllenburg; 2019 Cleve; 2020 Cleve; 2020 2

  10. Recognizing Caterpillars in Linear Time • A caterpillar is a tree • backbone path plus leaves Reminder: 3

  11. Recognizing Caterpillars in Linear Time Algorithm: Caterpillar G 3

  12. Recognizing Caterpillars in Linear Time Algorithm: Caterpillar G backbone 3 Find longest path v 0 , v 1 , . . . , v k , v k +1

  13. Recognizing Caterpillars in Linear Time Algorithm: Caterpillar G backbone Place backbone disks horizontally 3 Find longest path v 0 , v 1 , . . . , v k , v k +1

  14. Recognizing Caterpillars in Linear Time Algorithm: Caterpillar G backbone Place backbone disks horizontally Place leaf disks at leftmost position 3 Find longest path v 0 , v 1 , . . . , v k , v k +1

  15. Recognizing Caterpillars in Linear Time Algorithm: Caterpillar G backbone Place backbone disks horizontally Place leaf disks at leftmost position 3 Find longest path v 0 , v 1 , . . . , v k , v k +1

  16. Recognizing Caterpillars in Linear Time Algorithm: Caterpillar G backbone Place backbone disks horizontally Place leaf disks at leftmost position 3 Find longest path v 0 , v 1 , . . . , v k , v k +1

  17. Recognizing Caterpillars in Linear Time Algorithm: Caterpillar G backbone Place backbone disks horizontally Place leaf disks at leftmost position 3 Find longest path v 0 , v 1 , . . . , v k , v k +1

  18. Recognizing Caterpillars in Linear Time Algorithm: Caterpillar G backbone Place backbone disks horizontally Place leaf disks at leftmost position 3 Find longest path v 0 , v 1 , . . . , v k , v k +1 �

  19. NP-hardness of Recognizing Trees 4 Theorem: Given a tree T , answering “ ∃ weak UDCR for T ? ” is NP-hard.

  20. NP-hardness of Recognizing Trees Proof: 4 Theorem: Given a tree T , answering “ ∃ weak UDCR for T ? ” is NP-hard. Not-All-Equal-3SAT ≤ P Tree-WUDCR, via logic engine .

  21. NP-hardness of Recognizing Trees Proof: 4 Theorem: Given a tree T , answering “ ∃ weak UDCR for T ? ” is NP-hard. Not-All-Equal-3SAT ≤ P Tree-WUDCR, via logic engine .

  22. NP-hardness of Recognizing Trees Proof: 4 Theorem: Given a tree T , answering “ ∃ weak UDCR for T ? ” is NP-hard. Not-All-Equal-3SAT ≤ P Tree-WUDCR, via logic engine .

  23. NP-hardness of Recognizing Trees Proof: Each clause: {0, 0, 1} or {0, 1, 1} 4 Theorem: Given a tree T , answering “ ∃ weak UDCR for T ? ” is NP-hard. Not-All-Equal-3SAT ≤ P Tree-WUDCR, via logic engine .

  24. NP-hardness of Recognizing Trees Proof: Each clause: {0, 0, 1} or {0, 1, 1} 4 Theorem: Given a tree T , answering “ ∃ weak UDCR for T ? ” is NP-hard. Not-All-Equal-3SAT ≤ P Tree-WUDCR, via logic engine . Example: c 1 = ( x 1 , x 2 , x 3 ) c 2 = ( x 1 , x 2 , x 4 ) c 3 = ( x 1 , x 3 , x 4 )

  25. NP-hardness of Recognizing Trees Proof: Logic engine Each clause: {0, 0, 1} or {0, 1, 1} 4 Theorem: Given a tree T , answering “ ∃ weak UDCR for T ? ” is NP-hard. Not-All-Equal-3SAT ≤ P Tree-WUDCR, via logic engine . Example: c 1 = ( x 1 , x 2 , x 3 ) c 2 = ( x 1 , x 2 , x 4 ) c 3 = ( x 1 , x 3 , x 4 )

  26. NP-hardness of Recognizing Trees c 2 • variable poles & clause levels Each clause: {0, 0, 1} or {0, 1, 1} Logic engine c 3 c 2 c 1 c 1 c 3 x 4 x 3 x 2 x 1 Proof: 4 Theorem: Given a tree T , answering “ ∃ weak UDCR for T ? ” is NP-hard. Not-All-Equal-3SAT ≤ P Tree-WUDCR, via logic engine . Example: c 1 = ( x 1 , x 2 , x 3 ) c 2 = ( x 1 , x 2 , x 4 ) c 3 = ( x 1 , x 3 , x 4 )

  27. NP-hardness of Recognizing Trees c 1 • positive literal: fmag on bottom • variable poles & clause levels Each clause: {0, 0, 1} or {0, 1, 1} Logic engine c 3 c 2 c 1 c 2 c 3 x 4 x 3 x 2 x 1 Proof: 4 Theorem: Given a tree T , answering “ ∃ weak UDCR for T ? ” is NP-hard. Not-All-Equal-3SAT ≤ P Tree-WUDCR, via logic engine . Example: c 1 = ( x 1 , x 2 , x 3 ) c 2 = ( x 1 , x 2 , x 4 ) c 3 = ( x 1 , x 3 , x 4 )

  28. NP-hardness of Recognizing Trees c 1 • negative literal: fmag on top • positive literal: fmag on bottom • variable poles & clause levels Each clause: {0, 0, 1} or {0, 1, 1} Logic engine c 3 c 2 c 1 c 2 c 3 x 4 x 3 x 2 x 1 Proof: 4 Theorem: Given a tree T , answering “ ∃ weak UDCR for T ? ” is NP-hard. Not-All-Equal-3SAT ≤ P Tree-WUDCR, via logic engine . Example: c 1 = ( x 1 , x 2 , x 3 ) c 2 = ( x 1 , x 2 , x 4 ) c 3 = ( x 1 , x 3 , x 4 )

  29. NP-hardness of Recognizing Trees c 2 x 2 x 3 x 4 • no literal: both fmags • negative literal: fmag on top • positive literal: fmag on bottom • variable poles & clause levels Each clause: {0, 0, 1} or {0, 1, 1} Logic engine c 3 c 1 c 1 c 2 c 3 x 4 x 3 x 2 x 1 Proof: 4 Theorem: Given a tree T , answering “ ∃ weak UDCR for T ? ” is NP-hard. Not-All-Equal-3SAT ≤ P Tree-WUDCR, via logic engine . Example: c 1 = ( x 1 , x 2 , x 3 ) c 2 = ( x 1 , x 2 , x 4 ) c 3 = ( x 1 , x 3 , x 4 )

  30. NP-hardness of Recognizing Trees c 2 x 2 x 3 x 4 • no literal: both fmags • negative literal: fmag on top • positive literal: fmag on bottom • variable poles & clause levels Each clause: {0, 0, 1} or {0, 1, 1} Logic engine c 3 c 1 c 1 c 2 c 3 x 4 x 3 x 2 x 1 Proof: 4 Theorem: Given a tree T , answering “ ∃ weak UDCR for T ? ” is NP-hard. Not-All-Equal-3SAT ≤ P Tree-WUDCR, via logic engine . Example: c 1 = ( x 1 , x 2 , x 3 ) c 2 = ( x 1 , x 2 , x 4 ) c 3 = ( x 1 , x 3 , x 4 )

  31. NP-hardness of Recognizing Trees = 1 x 2 x 3 x 4 • no literal: both fmags • negative literal: fmag on top • positive literal: fmag on bottom • variable poles & clause levels Each clause: {0, 0, 1} or {0, 1, 1} Logic engine = 1 = 1 = 1 c 3 c 3 Proof: x 1 x 2 x 3 x 4 4 c 2 c 1 c 1 c 2 Theorem: Given a tree T , answering “ ∃ weak UDCR for T ? ” is NP-hard. Not-All-Equal-3SAT ≤ P Tree-WUDCR, via logic engine . Example: c 1 = ( x 1 , x 2 , x 3 ) c 2 = ( x 1 , x 2 , x 4 ) c 3 = ( x 1 , x 3 , x 4 )

  32. NP-hardness of Recognizing Trees c 3 • no literal: both fmags • negative literal: fmag on top • positive literal: fmag on bottom • variable poles & clause levels Each clause: {0, 0, 1} or {0, 1, 1} Logic engine = 1 = 1 = 1 = 1 c 2 c 1 c 1 c 2 c 3 x 4 x 3 x 2 x 1 Proof: 4 Theorem: Given a tree T , answering “ ∃ weak UDCR for T ? ” is NP-hard. Not-All-Equal-3SAT ≤ P Tree-WUDCR, via logic engine . Example: c 1 = ( x 1 , x 2 , x 3 ) c 2 = ( x 1 , x 2 , x 4 ) c 3 = ( x 1 , x 3 , x 4 )

  33. NP-hardness of Recognizing Trees c 3 • no literal: both fmags • negative literal: fmag on top • positive literal: fmag on bottom • variable poles & clause levels Each clause: {0, 0, 1} or {0, 1, 1} Logic engine = 1 = 1 = 1 = 0 c 2 c 1 c 1 c 2 c 3 x 4 x 3 x 2 x 1 Proof: 4 Theorem: Given a tree T , answering “ ∃ weak UDCR for T ? ” is NP-hard. Not-All-Equal-3SAT ≤ P Tree-WUDCR, via logic engine . Example: c 1 = ( x 1 , x 2 , x 3 ) c 2 = ( x 1 , x 2 , x 4 ) c 3 = ( x 1 , x 3 , x 4 )

  34. Modeling Line Segments 5

  35. Modeling Line Segments 5

  36. Modeling Line Segments 5

  37. Modeling Line Segments 5

  38. Modeling Line Segments 5

  39. Modeling Line Segments 5

  40. Modeling Line Segments 5

  41. Modeling Line Segments 5

  42. Modeling Line Segments 5

  43. Modeling Line Segments 5

  44. Modeling Line Segments 5

  45. Modeling Line Segments 5

Recommend


More recommend