vo vorticity and spin polarization in hea in heavy io ion
play

Vo Vorticity and spin polarization in hea in heavy-io ion c n - PowerPoint PPT Presentation

Vo Vorticity and spin polarization in hea in heavy-io ion c n collis llisio ions ns Xu-Guang Huang Fudan University, Shanghai September 15th , 2020 @ Webnar given at Sharif University of Technology, Tehran, Iran Motivation of the talk


  1. Vo Vorticity and spin polarization in hea in heavy-io ion c n collis llisio ions ns Xu-Guang Huang Fudan University, Shanghai September 15th , 2020 @ Webnar given at Sharif University of Technology, Tehran, Iran

  2. Motivation of the talk Quark-gluon plasma: “The most vortical fluid” Experiment = Theory

  3. Motivation of the talk • But: discrepancies exist between theory and experiments 1) longitudinal polarization vs 𝜚 2) Transverse polarization vs 𝜚 Vs 2018 2018 3) Vector meson spin alignment Too big than expected! Sign is not understood! QM2019

  4. Outline • Vorticity in heavy-ion collisions (HICs) • From vorticity to spin polarization of hadrons • Spin hydrodynamics • Spin alignment and spin dependent hadron yields • Summary

  5. Vorticity in heavy-ion collisions 5

  6. What is vorticity? 𝝏 = 𝟐 𝟑 𝛂×𝒘 Fluid vorticity Vortex in a coffee cup (Angular velocity of fluid cell)

  7. What is vorticity? • Vortices: common phenomena in fluids across a very broad hierarchy of scales 𝟐𝟏 𝟑 − 𝟐𝟏 #𝟑 𝒏 𝟐𝟏 #𝟔 − 𝟐𝟏 #𝟗 𝒏 𝟐𝟏 𝟑𝟐 𝒏 𝟐𝟏 #𝟐𝟔 𝒏 Rotating galaxies Superfluid helium Quark gluon matter Tornados, ocean vortices, …

  8. Why fluid vorticity in HICs? ⨀ y 𝑸 𝒜 ~ 𝑩 𝒕 𝟑 𝑲 𝟏 ~ 𝑩𝒄 𝒕 𝒄 𝟑 ~𝟐𝟏 𝟐𝟗 G 𝒂 𝒇𝑪~𝜹𝜷 '( ~𝟐𝟏 𝟕 ℏ 𝟑 Global angular momentum Strong Magnetic field (RHIC Au+Au 200 GeV, b=10 fm)

  9. Why fluid vorticity in HICs? ⨀ y 𝑸 𝒜 ~ 𝑩 𝒕 𝟑 Local vorticity 𝑲 𝟏 ~ 𝑩𝒄 𝒕 ~𝟐𝟏 𝟕 ℏ 𝟑 𝝏~ ? Global angular momentum (RHIC Au+Au 200 GeV, b=10 fm)

  10. Vorticity by global angular momentum Energy dependence of initial vorticity Time dependence AMPT (Jiang-Lin-Liao 2016) (Deng-XGH 2016; Deng-XGH-Ma-Zhang 2020) The most vortical fluid: Au+Au@RHIC at 𝒄 =10 fm is 𝟐𝟏 𝟑𝟏 − 𝟐𝟏 𝟑𝟐 𝒕 $𝟐 (See also: Becattini-Karpenko etal 2015,2016; Xie-Csernai etal 2014,2016,2019; Pang- Petersen-Wang-Wang 2016; Xia-Li-Wang 2017,2018; Sun- Ko 2017; Wei-Deng-XGH 2018; … …)

  11. Vorticity by fireball expansion Transverse (Xia-Li-Wang 2017) (Wei-Deng-XGH 2018) (See also: Karpenko- Thermal Longitudinal Becattini 2017; Csernai vorticity etal 2014; Teryaev- Usubov 2015; Ivanov- Soldatov 2018; … …) 11

  12. Other sources of vorticity 1) Jet (Pang-Peterson-Wang-Wang 2016) 2) Magnetic field Einstein-de-Haas effect

  13. Main message: 1. Global AM induces strong vorticity in HICs : 𝝏 ≈ 𝟐𝟏 𝟑𝟐 − 𝟐𝟏 𝟑𝟑 𝒕 #𝟐 2. Fireball expansion: quadrupoles in both xy and xz planes How to detect it experimentally? Spin polarization, Chiral vortical effects, … …

  14. Spin polarization by vorticity 14

  15. How vorticity polarizes spin? Early idea: Liang-Wang PRL2005; Voloshin 2004 Vorticity interpretation (at thermal equilibrium) 𝑒𝑂 𝑒𝒒 ~𝑓 "($ " "𝝏&𝑻)/* 𝐼 = 𝐼 ! − 𝝏 % 𝑻 P = 𝑂 ↑ − 𝑂 ↓ ~ 𝜕 𝑂 ↑ + 𝑂 ↓ 2𝑈 More rigorous derivation (Becattini etal 2013; Fang etal 2016; Liu-Mameda-XGH 2020) ∫ 𝑒Σ , 𝑞 , 𝑔 - (𝑦, 𝑞)𝜜 *+ (𝑦) 𝑄 ( 𝑞 = 1 4𝑛 𝜗 ()*+ 𝑞 ) + 𝑃(𝜜 . ) ∫ 𝑒Σ , 𝑞 , 𝑔(𝑦, 𝑞) • Valid at global equilibrium. 𝑔(𝑦, 𝑞) is the distribution function (Fermi-Dirac) / • Thermal vorticity 𝜜 *+ = 𝜖 + 𝛾 * − 𝜖 * 𝛾 + . 15 • Spin polarization is enslaved to thermal vorticity, not dynamical • Friendly for numerical simulation (a spin Cooper-Frye type formula)

  16. Global Λ spin polarization The global polarization (i.e., integrated polarization over kinematics): Experiment = Theory Sun-Ko PRC2017; Wei-Deng-XGH PRC2019; Xie-Wang- Csernai PRC2017; Karpenko-Becattini EPJC2016 MUSIC hydro (Many similar results in literature) Vorticity interpretation of global Λ Fu-Xu-XGH-Song, polarization works well! to appear 16

  17. Global Λ spin polarization The global polarization (i.e., integrated polarization over kinematics): Experiment = Theory Sun-Ko PRC2017; Wei-Deng-XGH PRC2019; Xie-Wang- Csernai PRC2017; Karpenko-Becattini EPJC2016 Though with big error bar, a difference (Many similar results in literature) ! ( ̅ between 𝑄 ! (𝛭) and 𝑄 𝛭) is seen. Vorticity interpretation of global Λ Magnetic field? polarization works well! 𝐼 = 𝐼 I − 𝝏 2 𝑻 − 𝒏 2 𝑪 17

  18. Global Λ spin polarization The global polarization: Experiment = Theory (Deng-XGH 2016; Deng-XGH-Ma-Zhang 2020) vs Need to study polarization at very low 𝒕 : NICA, FAIR, HIAF, BES II@RHIC? HADES 2019

  19. Differential Λ spin polarization The global Λ polarization reflects the total amount of angular momentum retained in the (-1,1) rapidity region. How is it distributed in e.g. 𝑞 0 , 𝜃 , and 𝜚 ? MUSIC hydro MUSIC hydro with AMPT IC with AMPT IC Fu-Xu-XGH-Song, to appear Initial vorticity by HIJING Final polarization by hydro Would be interesting to look at very large rapidity? Wu etal PRR2019 Deng-XGH PRC2016

  20. Differential Λ spin polarization The global Λ polarization reflects the total amount of angular momentum retained in the (-1,1) rapidity region. How is it distributed in e.g. 𝑞 0 , 𝜃 , and 𝜚 ? 𝒆𝑸 𝒛,𝒜 𝒆𝝔 ∝ 𝑸 𝒛,𝒜 + 𝟑𝒈 𝟑𝒛,𝒜 𝐭𝐣𝐨 𝟑𝝔 + 𝟑𝒉 𝟑𝒛,𝒜 𝐝𝐩𝐭 𝟑𝝔 + ⋯ • Spin harmonic flow: 1) longitudinal polarization vs 𝜚 2) Transverse polarization vs 𝜚 (Wei-Deng-XGH PRC2019) (Becattini-Karpenko PRL2018) Vs STAR2018 STAR2018 𝐟𝐲𝐪 > 𝟏 𝐮𝐢𝐟𝐬 < 𝟏 𝐟𝐲𝐪 > 𝟏 𝐮𝐢𝐟𝐬 < 𝟏, 𝒉 𝟑𝒛 𝒈 𝟑𝒜 𝒈 𝟑𝒜 𝒉 𝟑𝒛 We have a spin “sign problem”! 20

  21. Differential Λ spin polarization Attack the puzzles from theory side: Understand the vorticity ( J ) • Effect of feed-down decays (Xia-Li-XGH-Huang PRC2019, Becattini-Cao-Speranza EPJC2019) • (Measured Λ may from decays of heavier particles) Go beyond equilibrium treatment (spin as a dynamic d.o.f) • spin hydrodynamics spin kinetic theory Initial condition • (Initial polarization, initial flow, … …) Other possibilities • (chiral vortical effect (Liu-Sun-Ko 2019) , mesonic mean-field (Csernai-Kapusta-Welle PRC2019) , other spin chemical potential (Wu-Pang-XGH-Wang PRR2019, Florkowski etal2019) , contribution from gluons, … …) Other observables for vorticity and spin polarization • Vector meson spin alignment (Liang-Wang 2005; STAR and ALICE) Vorticity dependent hadron yield (ExHIC-P Collaboration 2002.10082)

  22. Feed-down effect 22

  23. One important contribution • About 80% of Λ’s are from decays of higher-lying particles Thermal model calculation • Some decay channels can flip the spin, e.g., EM decay: • The angular momentum conservation, requires that if Σ is polarization along the vorticity, its daughter Λ must be polarized opposite to the vorticity • Let us examine the decay contribution 23

  24. Spin transfer • Consider the decay process • The parent P is spin-polarized along z, the daughter D moves along p* in P’s rest frame Density matrix The spin polarization of D: 24

  25. Spin transfer • For example, consider the EM decay 1/2 ! → 1/2 ! 1 " : Initial density matrix: First derived by Gatto 1958 25

  26. The feed-down correction (Xia-Li-XGH-Huang PRC2019) Too long to be shown; see ref. Longitudinal polarization • (Xia-Li-XGH-Huang PRC2019) (Becattini-Cao-Speranza EPJC2019) Transverse polarization • Conclusion: Feed-down effects suppress ~ 10% Λ • primordial spin polarization Do not solve the spin sign problem •

  27. Spin hydrodynamics 27

  28. Spin hydrodynamics Framework for collective spin dynamics. Spin as a (quasi-)hydrodynamic variable • Widely used in non-relativistic spintronics, micropolar fluid, … … (Takahashi etal Nat.Phy.2016) • Relativistic ideal spin hydrodynamics (Florkowski etal PRC2018) 28 (See also: Florkowski etal PRD2018,PPNP2019; Motenegro etal PRD2017, PRD2017)

  29. Spin hydrodynamics Relativistic dissipative spin hydrodynamics (Hattori-Hongo-XGH-Matsuo-Taya PLB2019) • Identify (quasi-)hydrodynamic variables: T and 𝒗 𝝂 (4 for translation), 𝝏 𝝂𝝃 = −𝝏 𝝃𝝂 (spin chemical potential, 3 for rotation, 3 for boost). • Derivative expansion. Apply 2 nd law of thermodynamics. • Constitutive relations up to 𝑷(𝝐) 𝝂𝝃 = 𝒇𝒗 𝝂 𝒗 𝝃 + 𝒒(𝒉 𝝂𝝃 + 𝒗 𝝂 𝒗 𝝃 ) 𝑼 (𝟏) shear viscosity heat current bulk viscosity 𝝂𝝃 = −𝟑𝝀 𝑬𝒗 (𝝂 + 𝜸𝝐 ( (𝝂 𝜸 )𝟐 𝒗 𝝃) − 𝟑𝜽𝝐 ( *𝝂 𝒗 𝝃+ − 𝜼 𝝐 𝝂 𝒗 𝝂 𝚬 𝝂𝝃 𝑼 (𝟐) −𝟑𝝁 −𝑬𝒗 [𝝂 + 𝜸𝝐 ( [𝝂 𝜸 )𝟐 + 𝟓𝒗 𝝇 𝝏 𝝇[𝝂 𝒗 𝝃] − 𝟑𝜹 𝝐 ( [𝝂 𝒗 𝝃] − 𝟑𝜠 𝝇 𝝂 𝜠 𝝁 𝝃 𝝏 𝝇𝝁 boost heat current rotational viscosity • Hydrodynamic equations 𝝂𝝃 + 𝑼 𝟐 𝝂𝝃 + 𝑷 𝝐 𝟑 𝜸𝜷 − 𝑼 (𝟐) 𝜷𝜸 + 𝑷(𝝐 𝟑 ) 𝒒 = 𝒒(𝒇, 𝒕 𝜷𝜸 ) 𝝐 𝝂 (𝒗 𝝂 𝒕 𝜷𝜸 ) = 𝑼 𝟐 𝝐 𝝂 𝑼 𝟏 = 𝟏 Energy-momentum conservation Equation of state Angular momentum conservation • Israel-Stewart type theory (See also: Florkowski etal 2020; Shi-Gale-Jeon 2020)

Recommend


More recommend