validating mathematical structures
play

Validating Mathematical Structures Kazuhiko Sakaguchi University of - PowerPoint PPT Presentation

Validating Mathematical Structures Kazuhiko Sakaguchi University of Tsukuba The Coq Workshop 2019 @ Portland Packed classes Packaging Mathematical Structures [Garillot et al. 2009] Packed classes are generic design patterns to define and


  1. Validating Mathematical Structures Kazuhiko Sakaguchi University of Tsukuba The Coq Workshop 2019 @ Portland

  2. Packed classes Packaging Mathematical Structures [Garillot et al. 2009] Packed classes are generic design patterns to define and combine algebraic structures, which support: ◮ multiple inheritance, ◮ maximal sharing of notations and theories, and ◮ automated structure inference. 2 / 16

  3. Packed classes Packaging Mathematical Structures [Garillot et al. 2009] Packed classes are generic design patterns to define and combine algebraic structures, which support: ◮ multiple inheritance, ◮ maximal sharing of notations and theories, and ◮ automated structure inference: ◮ requires a lot of unification hints in the form of canonical projections [Mahboubi et al. 2013] . ◮ E.g., MathComp 1.9.0: 49 structures, 547 implicit coercions, 711 canonical projections. 2 / 16

  4. Packed classes Packaging Mathematical Structures [Garillot et al. 2009] Equality Choice Countable Finite GRing.Zmodule FinGroup GRing.Lmodule CountRing.Zmodule GRing.Ring FinRing.Zmodule GRing.Lalgebra Vector CountRing.Ring GRing.UnitRing GRing.ComRing FinRing.Lmodule GRing.Algebra FinRing.Ring CountRing.UnitRing CountRing.ComRing GRing.ComUnitRing FinRing.Lalgebra GRing.UnitAlgebra FinRing.UnitRing FinRing.ComRing CountRing.ComUnitRing GRing.IntegralDomain FinRing.Algebra Falgebra FinRing.ComUnitRing CountRing.IntegralDomain GRing.Field Num.NumDomain FinRing.UnitAlgebra FieldExt FinRing.IntegralDomain CountRing.Field GRing.DecidableField Num.NumField Num.RealDomain SplittingField FinRing.Field CountRing.DecidableField GRing.ClosedField Num.RealField CountRing.ClosedField Num.ClosedField Num.ArchimedeanField Num.RealClosedField 2 / 16

  5. A hierarchy with multiple inheritance less axioms, Type more instances, + , 0 larger structures Monoids Semirings Groups − × , 1 more axioms, (additive inverse) less instances, Rings smaller structures 3 / 16

  6. A hierarchy with multiple inheritance less axioms, Type more instances, + , 0 larger structures Monoids Semirings Groups − × , 1 more axioms, (additive inverse) less instances, Rings smaller structures 3 / 16

  7. How to define a structure? Module Monoid. Record class_of (A : Type) := Class { (* set of operators and axioms *) }. Structure type := Pack { sort : Type; _ : class_of sort }. Local Definition class (cT : type) := match cT as cT' return class_of (sort cT') with Pack _ c ⇒ c end. End Monoid. Coercion Monoid.sort : Monoid.type >-> Sortclass. 4 / 16

  8. How to define a structure? Module Monoid. Record class_of (A : Type) := Class { (* set of operators and axioms *) }. Structure type := Pack { sort : Type; _ : class_of sort }. Local Definition class (cT : type) := match cT as cT' return class_of (sort cT') with Pack _ c ⇒ c end. End Monoid. Coercion Monoid.sort : Monoid.type >-> Sortclass. : ∀ A : Monoid.type, Monoid.sort A → Monoid.sort A → Monoid.sort A add zero : ∀ A : Monoid.type, Monoid.sort A 4 / 16

  9. How to define a structure? Module Monoid. Record class_of (A : Type) := Class { (* set of operators and axioms *) }. Structure type := Pack { sort : Type; _ : class_of sort }. Local Definition class (cT : type) := match cT as cT' return class_of (sort cT') with Pack _ c ⇒ c end. End Monoid. Coercion Monoid.sort : Monoid.type >-> Sortclass. : ∀ A : Monoid.type, A → A → A add zero : ∀ A : Monoid.type, A 4 / 16

  10. Type Semiring.sort Group.sort zero : ∀ A : Monoid.type, A Monoid.sort add : ∀ A : Monoid.type, A → A → A Monoid.type Semiring.monoidType Group.monoidType T : Ring.type Semiring.type Group.type @one T : ... one : ∀ A : Semiring.type, A opp : ∀ A : Group.type, A → A Ring.monoidType Ring.sort mul : ∀ A : Semiring.type, A → A → A Ring.semiringType Ring.groupType Ring.type 5 / 16

  11. Type Semiring.sort Group.sort zero : ∀ A : Monoid.type, A Monoid.sort add : ∀ A : Monoid.type, A → A → A Monoid.type Semiring.monoidType Group.monoidType T : Ring.type Semiring.type Group.type @one T : ... one : ∀ A : Semiring.type, A opp : ∀ A : Group.type, A → A Ring.monoidType Ring.sort mul : ∀ A : Semiring.type, A → A → A Ring.semiringType Ring.groupType Ring.type 5 / 16

  12. Type Semiring.sort Group.sort zero : ∀ A : Monoid.type, A Monoid.sort add : ∀ A : Monoid.type, A → A → A Monoid.type Semiring.monoidType Group.monoidType T : Ring.type Semiring.type Group.type @one T : ... one : ∀ A : Semiring.type, A opp : ∀ A : Group.type, A → A Ring.monoidType Ring.sort mul : ∀ A : Semiring.type, A → A → A Ring.semiringType Ring.groupType Ring.type 5 / 16

  13. Type Semiring.sort Group.sort zero : ∀ A : Monoid.type, A Monoid.sort add : ∀ A : Monoid.type, A → A → A Monoid.type Semiring.monoidType Group.monoidType T : Ring.type Semiring.type Group.type @one T : ... one : ∀ A : Semiring.type, A opp : ∀ A : Group.type, A → A Ring.monoidType Ring.sort mul : ∀ A : Semiring.type, A → A → A Ring.semiringType Ring.groupType Ring.type � = Semiring.type Ring.type 5 / 16

  14. Type Semiring.sort Group.sort zero : ∀ A : Monoid.type, A Monoid.sort add : ∀ A : Monoid.type, A → A → A Monoid.type Semiring.monoidType Group.monoidType Ring.semiringType : Ring.type → Semiring.type T : Ring.type Semiring.type Group.type @one (Ring.semiringType T) one : ∀ A : Semiring.type, A opp : ∀ A : Group.type, A → A : Semiring.sort ( Ring.semiringType T) Ring.monoidType Ring.sort mul : ∀ A : Semiring.type, A → A → A Ring.semiringType Ring.groupType Ring.type 5 / 16

  15. Type Semiring.sort Group.sort zero : ∀ A : Monoid.type, A Monoid.sort add : ∀ A : Monoid.type, A → A → A Monoid.type Semiring.monoidType Group.monoidType Ring.semiringType : Ring.type → Semiring.type T : Ring.type Semiring.type Group.type @one (Ring.semiringType T) one : ∀ A : Semiring.type, A opp : ∀ A : Group.type, A → A : Semiring.sort ( Ring.semiringType T) Ring.monoidType Ring.sort mul : ∀ A : Semiring.type, A → A → A Ring.semiringType Ring.groupType Ring.type 5 / 16

  16. Implicit coercions ◮ If a structure B (transitively) inherits a structure A , we should declare an implicit coercion B >-> A . ◮ Transitive ones can be automatically computed by Coq, but we declare them explicitly to mitigate performance issues. 6 / 16

  17. Implicit coercions ◮ If a structure B (transitively) inherits a structure A , we should declare an implicit coercion B >-> A . ◮ Transitive ones can be automatically computed by Coq, but we declare them explicitly to mitigate performance issues. ◮ There are ambiguous paths for multiple inheritances, e.g., [Ring.monoidType] : Ring.type >-> Monoid.type. [Ring.groupType; Group.monoidType] : Ring.type >-> Monoid.type. [Ring.semiringType; Semiring.monoidType] : Ring.type >-> Monoid.type. ◮ If we use packed classes correctly, these ambiguous paths will be convertible with each other. If they aren’t, the hierarchy is broken. 6 / 16

  18. Implicit coercions ◮ We had no systematic way to detect inconvertible ambiguous paths in Coq 8.9, because it reports all inheritance paths as ambiguous that have the same classes as existing ones. ◮ We have relaxed the condition of ambiguous paths by convertibility checking. Coq 8.10 will report only inconvertible ones as ambiguous: coq/coq#9743 . ◮ This ambiguity checking is nontrivial in general, but we found that it’s easy for uniform inheritances . 7 / 16

  19. Automated structure inference Group.type Type Monoid.type Ring.type Semiring.type ⊢ @add ? 1 ( @zero ? 1 ) ( @one ? 2 ) : . . . 8 / 16

  20. Automated structure inference Group.type Type Monoid.type Ring.type Semiring.type . . . . . . @add ? 1 ( @zero ? 1 ) : Monoid.sort ? 1 → Monoid.sort ? 1 @one ? 2 : Semiring.sort ? 2 ⊢ @add ? 1 ( @zero ? 1 ) ( @one ? 2 ) : . . . 8 / 16

  21. Automated structure inference Group.type Type Monoid.type Ring.type Semiring.type . . . . . . @add ? 1 ( @zero ? 1 ) : Monoid.sort ? 1 → Monoid.sort ? 1 @one ? 2 : Semiring.sort ? 2 Monoid.sort ? 1 = Semiring.sort ? 2 ⊢ @add ? 1 ( @zero ? 1 ) ( @one ? 2 ) : . . . 8 / 16

  22. Automated structure inference Group.type Type Monoid.type Ring.type Semiring.type . . . . . . @add ? 1 ( @zero ? 1 ) : Monoid.sort ? 1 → Monoid.sort ? 1 @one ? 2 : Semiring.sort ? 2 Monoid.sort ? 1 = Semiring.sort ? 2 ⊢ @add ? 1 ( @zero ? 1 ) ( @one ? 2 ) : . . . The canonical solution is: ? 1 : = Semiring.monoidType ? 2 . 8 / 16

  23. Automated structure inference Group.type Type Monoid.type Ring.type Semiring.type ⊢ @opp ? 3 ( @one ? 4 ) : . . . 8 / 16

  24. Automated structure inference Group.type Type Monoid.type Ring.type Semiring.type . . . . . . @opp ? 3 : Group.sort ? 3 → Group.sort ? 3 @one ? 4 : Semiring.sort ? 4 ⊢ @opp ? 3 ( @one ? 4 ) : . . . 8 / 16

  25. Automated structure inference Group.type Type Monoid.type Ring.type Semiring.type . . . . . . @opp ? 3 : Group.sort ? 3 → Group.sort ? 3 @one ? 4 : Semiring.sort ? 4 Group.sort ? 3 = Semiring.sort ? 4 ⊢ @opp ? 3 ( @one ? 4 ) : . . . 8 / 16

Recommend


More recommend