universal lower bounds for the energy of spherical codes
play

Universal lower bounds for the energy of spherical codes: lifting - PowerPoint PPT Presentation

Universal lower bounds for the energy of spherical codes: lifting the Levenshtein framework P. Boyvalenkov P. Dragnev D.Hardin E. Saff M. Stoyanova Optimal Point Configurations and Orthogonal Polynomials 2017 Castro Urdiales, Spain Linear


  1. Universal lower bounds for the energy of spherical codes: lifting the Levenshtein framework P. Boyvalenkov P. Dragnev D.Hardin E. Saff M. Stoyanova Optimal Point Configurations and Orthogonal Polynomials 2017 Castro Urdiales, Spain

  2. Linear Programming Bounds: Notation ◮ S n − 1 : unit sphere in R n ◮ Spherical Code: A finite set C ⊂ S n − 1 with cardinality | C | ◮ r 2 = | x − y | 2 = 2 − 2 � x , y � = 2 − 2 t . ◮ Interaction potential h : [ − 1 , 1) → R ◮ Riesz s -potential: h ( t ) = (2 − 2 t ) − s / 2 = | x − y | − s ◮ The h -energy of a spherical code C : � E ( n , h ; C ) := h ( � x , y � ) , x , y ∈ C , y � = x where t = � x , y � denotes Euclidean inner product of x and y . ◮ E ( n , h ; N ) = min { E h ( C ) | C ⊂ S n − 1 , | C | = N } . ◮ Absolutely monotone h : h ( k ) ( t ) ≥ 0 for all t ∈ [ − 1 , 1) and all k ≥ 0.

  3. Spherical Harmonics ◮ Harm ( k ): homogeneous harmonic polynomials in n variables of degree k restricted to S n − 1 with � k + n − 3 � � 2 k + n − 2 � r k := dim Harm ( k ) = . n − 2 k ◮ Spherical harmonics (degree k ): { Y kj ( x ) : j = 1 , 2 , . . . , r k } orthonormal basis of Harm ( k ) with respect to surface measure on S n − 1 .

  4. Gegenbauer polynomials ◮ The Gegenbauer polynomials and spherical harmonics can be defined through the Addition Formula : r k k ( t ) := 1 P ( n ) � t = � x , y � , x , y ∈ S n − 1 . Y kj ( x ) Y kj ( y ) , r k j =1 ◮ { P ( n ) k ( t ) } ∞ k =0 is orthogonal with respect to the weight (1 − t 2 ) ( n − 3) / 2 on [ − 1 , 1] and normalized so that P ( n ) k (1) = 1.

  5. Spherical Designs ◮ The k -th moment of a spherical code C S n − 1 is r k k ( � x , y � ) = 1 P ( n ) � � � � M k ( C ) := Y kj ( x ) Y kj ( y ) r k x , y ∈ C j =1 x ∈ C y ∈ C � 2 r k �� = 1 � Y kj ( x ) ≥ 0 . r k j =1 x ∈ C ◮ M k ( C ) = 0 if and only if � x ∈ C Y ( x ) = 0 for all Y ∈ Harm ( k ). ◮ If M k ( C ) = 0 for 1 ≤ k ≤ τ , then C is called a spherical τ -design and � S n − 1 p ( y ) d σ n ( y ) = 1 � p ( x ) , ∀ polys p of deg at most τ . N x ∈ C

  6. ‘Good’ potentials for lower bounds Suppose f : [ − 1 , 1] → R is of the form ∞ f k P ( n ) � f ( t ) = k ( t ) , f k ≥ 0 for all k ≥ 1 . (1) k =0 f (1) = � ∞ k =0 f k < ∞ = ⇒ convergence is absolute and uniform. Then: � E ( n , C ; f ) = f ( � x , y � ) − f (1) N x , y ∈ C ∞ P ( n ) � � = f k k ( � x , y � ) − f (1) N k =0 x , y ∈ C � f 0 − f (1) � ≥ f 0 N 2 − f (1) N = N 2 . N

  7. ‘Good’ potentials for lower bounds Suppose f : [ − 1 , 1] → R is of the form ∞ f k P ( n ) � f ( t ) = k ( t ) , f k ≥ 0 for all k ≥ 1 . (1) k =0 f (1) = � ∞ k =0 f k < ∞ = ⇒ convergence is absolute and uniform. Then: � E ( n , C ; f ) = f ( � x , y � ) − f (1) N x , y ∈ C ∞ � = f k M k ( C ) − f (1) N k =0 � f 0 − f (1) � ≥ f 0 N 2 − f (1) N = N 2 . N

  8. Let A n , h := { f : f ( t ) ≤ h ( t ) , t ∈ [ − 1 , 1) , f k ≥ 0 , k = 1 , 2 , . . . } . Thm (Delsarte-Yudin LP Bound) For any C ⊂ S n − 1 with | C | = N E ( n , h ; C ) ≥ N 2 ( f 0 − f (1) N ) . (2) C satisfies E ( n , h ; C ) = E ( n , f ; C ) = N 2 ( f 0 − f (1) N ) ⇐ ⇒ (a) f ( t ) = h ( t ) for t ∈ {� x , y � : x � = y , x , y ∈ C } , and (b) for all k ≥ 1, either f k = 0 or M k ( C ) = 0 .

  9. Example: n -Simplex on S n − 1 Let C be N = n + 1 points on S n − 1 forming a regular simplex. Then there is only one inner product α 0 = � x , y � for x � = y ∈ C . ◮ The first degree Gegenbauer polynomial P ( n ) 1 ( t ) = t . x ∈ C x | 2 = 0 . ◮ M 1 ( C ) = � x , y ∈ C � x , y � = | � If h is convex and increasing then linear interpolant f ( t ) = h ( α 0 ) + h ′ ( α 0 )( t + 1 / n ) has (a) f 1 = h ′ ( α 0 ) ≥ 0 and (b) f ( t ) ≤ h ( t ) = ⇒ E ( n , h ; N = n + 1) = E ( n , h ; C ) .

  10. Coding Problem: Separation Consider ∆( C ) := min x � = y ∈ C | x − y | Suppose f ∈ C [ − 1 , 1] has nonnegative Gegenbauer coefficients f k ≥ 0 and that f ( t ) ≤ 0 for t ∈ [ − 1 , t 0 ) for some t 0 ∈ ( − 1 , 1). Let M = max t f ( t ) and define � 0 − 1 ≤ t ≤ t 0 h ( t ) = . M t 0 < t ≤ 1 Then: ◮ f ∈ A ( n , h ). ◮ E ( n , C ; h ) > 0 ⇐ ⇒ ∆( C ) < cos( t 0 ). ◮ f 0 − f (1) > 0 = ⇒ N ≤ f (1) / f 0 if there is any C with N ∆( C ) ≥ cos( t 0 ) and | C | = N .

  11. Linear program: Maximize D-Y lower bound Maximizing Delsarte-Yudin lower bound is a linear programming problem. Max F ( f ) := N 2 ( f 0 − f (1) N ) , subject to f ∈ A n , h . For a subspace Λ ⊂ C ([ − 1 , 1]), we consider N 2 ( f 0 − f (1) / N ) . W ( n , N , Λ; h ) := sup (3) f ∈ Λ ∩ A n , h

  12. 1 / N -Quadrature Rules and Hermite Interpolation ◮ For a subspace Λ ⊂ C ([ − 1 , 1]) and N > 1, we say { ( α i , ρ i ) } k i =1 is a 1 / N -quadrature rule exact for Λ if − 1 ≤ α i < 1, ρ i > 0 for i = 1 , 2 , . . . , k , and � 1 k f ( t )(1 − t 2 ) ( n − 3) / 2 dt = f (1) � f 0 = γ n N + ρ i f ( α i ) , ( f ∈ Λ) . − 1 i =1 ◮ For f ∈ Λ ∩ A n , h , k k f 0 − f (1) � � = ρ i f ( α i ) ≤ ρ i h ( α i ) , N i =1 i =1 and so k � W ( n , N , Λ; h ) ≤ ρ i h ( α i ) . (4) i =1 ◮ If there is some f ∈ Λ ∩ A n , h such that f ( α i ) = h ( α i ) for i = 1 , . . . , k , then equality holds in (4).

  13. Sharp Codes A spherical design C of degree m yields a quadrature rule that is exact for Λ = Π m (polynomials of degree m ) with nodes {� x , y � | x � = y ∈ C } . Definition A spherical code C ⊂ S n − 1 is sharp if there are m inner products between distinct points in it and C is a spherical (2 m − 1)-design. Theorem (Cohn and Kumar, 2006) If C ⊂ S n − 1 is a sharp code, then C is universally optimal ; i.e., C is h-energy optimal for any h that is absolutely monotone on [ − 1 , 1] . Idea of proof: Show Hermite interpolant to h is in A ( n , h ).

  14. Levenshtein Framework - 1 / N -Quadrature Rule ◮ For every fixed (cardinality) N > D ( n , 2 k − 1)(the DGS bound) there exist real numbers − 1 ≤ α 1 < α 2 < · · · < α k < 1 and ρ 1 , ρ 2 , . . . , ρ k , ρ i > 0 for i = 1 , 2 , . . . , k , such that the equality k f 0 = f (1) � + ρ i f ( α i ) N i =1 holds for every real polynomial f ( t ) of degree at most 2 k − 1. ◮ The numbers α i , i = 1 , 2 , . . . , k , are the roots of the equation P k ( t ) P k − 1 ( s ) − P k ( s ) P k − 1 ( t ) = 0 , where s = α k , P i ( t ) = P ( n − 1) / 2 , ( n − 3) / 2 ( t ) is a Jacobi i polynomial.

  15. Universal Lower Bound (ULB) ULB Theorem - (BDHSS, 2016) Let h be a fixed absolutely monotone potential, n and N be fixed, and N ≥ D ( n , 2 k − 1). Then the Levenshtein nodes { α i } provide the bounds k � E ( n , N , h ) ≥ N 2 ρ i h ( α i ) . i =1 The Hermite interpolants at these nodes are the optimal polynomials which solve the finite LP in the class P τ ∩ A n , h .

  16. Improvement of ULB and Test Functions Test functions (Boyvalenkov, Danev, Boumova, ‘96) k Q j ( n , α k ) := 1 ρ i P ( n ) � N + ( α i ) . j i =1 Subspace ULB Improvement Theorem (BDHSS, 2016) Let { ( α i , ρ i ) } k i =1 be a 1 / N -quadrature rule that is exact for a subspace Λ ⊂ C ([ − 1 , 1]) and such that equality holds in (4), namely k W ( n , N , Λ; h ) = N 2 � ρ i h ( α i ) . i =1 Suppose Λ ′ = Λ � span { P ( n ) : j ∈ I} for some index set I ⊂ N . j If Q ( n ) i =1 ρ i P ( n ) N + � k := 1 ( α i ) ≥ 0 for j ∈ I , then j j k � W ( n , N , Λ ′ ; h ) = W ( n , N , Λ; h ) = N 2 ρ i h ( α i ) . i =1

  17. ULB Improvement for (4 , 24)-codes The case n = 4, N = 24 is important. C 4 consists of the minimal length vectors in D 4 lattice. | C 4 | = 24. ◮ Kissing numbers in R 4 - solved by Musin in 2003 using modification of linear programming bounds. ◮ C 4 is conjectured to be maximal code but not yet proved. ◮ C 4 is not universally optimal - Cohn, Conway, Elkies, Kumar - 2008.

  18. ULB Improvement for (4 , 24)-codes For n = 4, N = 24 Levenshtein nodes and weights (exact for Π 5 ) are: { α 1 , α 2 , α 3 } = {− . 817352 ..., − . 257597 ..., . 474950 ... } { ρ 1 , ρ 2 , ρ 3 } = { 0 . 138436 ..., 0 . 433999 ..., 0 . 385897 ... } , The test functions for (4 , 24)-codes are: Q 6 Q 7 Q 8 Q 9 Q 10 Q 11 Q 12 0 . 0857 0 . 1600 − 0 . 0239 − 0 . 0204 0 . 0642 0 . 0368 0 . 0598 Motivated by this we define Λ := span { P (4) 0 , . . . , P (4) 5 , P (4) 8 , P (4) 9 } .

  19. ULB Improvement for (4 , 24)-codes - Main Theorem Theorem The collection of nodes and weights { ( α i , ρ i ) } 4 i =1 { α 1 , α 2 , α 3 , α 4 } = {− 0 . 86029 ..., − 0 . 48984 ..., − 0 . 19572 , 0 . 478545 ... } { ρ 1 , ρ 2 , ρ 3 , ρ 4 } = { 0 . 09960 ..., 0 . 14653 ..., 0 . 33372 ..., 0 . 37847 ... } , define a 1 / N-quadrature rule that is exact for Λ . A Hermite-type interpolant H ( t ) = H ( h ; ( t − α 1 ) 2 . . . ( t − α 4 ) 2 ) ∈ Λ ∩ A n , h s. t. , H ′ ( α i ) = h ′ ( α i ) , H ( α i ) = h ( α i ) , i = 1 , . . . , 4 exists, and hence, improved ULB holds 4 E (4 , 24; h ) ≥ N 2 � ρ i h ( α i ) . i =1 Moreover, the new test functions Q ( n ) ≥ 0 , j = 0 , 1 , . . . , and hence j H ( t ) is the optimal LP solution among all polynomials in A 4 , h .

Recommend


More recommend