unexpected biases in the distribution of consecutive
play

Unexpected biases in the distribution of consecutive primes Robert - PowerPoint PPT Presentation

Unexpected biases in the distribution of consecutive primes Robert J. Lemke Oliver, Kannan Soundararajan Stanford University Chebyshevs Bias Let ( x ; q , a ) := # { p < x : p a (mod q ) } . Chebyshevs Bias Let ( x ; q , a )


  1. Unexpected biases in the distribution of consecutive primes Robert J. Lemke Oliver, Kannan Soundararajan Stanford University

  2. Chebyshev’s Bias Let π ( x ; q , a ) := # { p < x : p ≡ a (mod q ) } .

  3. Chebyshev’s Bias Let π ( x ; q , a ) := # { p < x : p ≡ a (mod q ) } . Under GRH, we have π ( x ; q , a ) = li ( x ) φ ( q ) + O ( x 1 / 2+ ǫ ) if ( a , q ) = 1.

  4. Chebyshev’s Bias Let π ( x ; q , a ) := # { p < x : p ≡ a (mod q ) } . Under GRH, we have π ( x ; q , a ) = li ( x ) φ ( q ) + O ( x 1 / 2+ ǫ ) if ( a , q ) = 1. Observation (Chebyshev) Quadratic residues seem slightly less frequent than non-residues.

  5. Chebyshev’s Bias Let π ( x ; q , a ) := # { p < x : p ≡ a (mod q ) } . Under GRH, we have π ( x ; q , a ) = li ( x ) φ ( q ) + O ( x 1 / 2+ ǫ ) if ( a , q ) = 1. Observation (Chebyshev) Quadratic residues seem slightly less frequent than non-residues. Theorem (Rubinstein-Sarnak) Under GRH (+ ǫ ) , π ( x ; 3 , 2) > π ( x ; 3 , 1) for 99 . 9% of x,

  6. Chebyshev’s Bias Let π ( x ; q , a ) := # { p < x : p ≡ a (mod q ) } . Under GRH, we have π ( x ; q , a ) = li ( x ) φ ( q ) + O ( x 1 / 2+ ǫ ) if ( a , q ) = 1. Observation (Chebyshev) Quadratic residues seem slightly less frequent than non-residues. Theorem (Rubinstein-Sarnak) Under GRH (+ ǫ ) , π ( x ; 3 , 2) > π ( x ; 3 , 1) for 99 . 9% of x, and analogous results hold for any q.

  7. Patterns of consecutive primes Let r ≥ 1 and a = ( a 1 , . . . , a r ),

  8. Patterns of consecutive primes Let r ≥ 1 and a = ( a 1 , . . . , a r ), and set π ( x ; q , a ) := # { p n < x : p n + i ≡ a i +1 (mod q ) for 0 ≤ i < r } .

  9. Patterns of consecutive primes Let r ≥ 1 and a = ( a 1 , . . . , a r ), and set π ( x ; q , a ) := # { p n < x : p n + i ≡ a i +1 (mod q ) for 0 ≤ i < r } . We expect that π ( x ; q , a ) ∼ li ( x ) /φ ( q ) r ,

  10. Patterns of consecutive primes Let r ≥ 1 and a = ( a 1 , . . . , a r ), and set π ( x ; q , a ) := # { p n < x : p n + i ≡ a i +1 (mod q ) for 0 ≤ i < r } . We expect that π ( x ; q , a ) ∼ li ( x ) /φ ( q ) r , but little is known:

  11. Patterns of consecutive primes Let r ≥ 1 and a = ( a 1 , . . . , a r ), and set π ( x ; q , a ) := # { p n < x : p n + i ≡ a i +1 (mod q ) for 0 ≤ i < r } . We expect that π ( x ; q , a ) ∼ li ( x ) /φ ( q ) r , but little is known: • If r = 2 and φ ( q ) = 2, then each a occurs infinitely often

  12. Patterns of consecutive primes Let r ≥ 1 and a = ( a 1 , . . . , a r ), and set π ( x ; q , a ) := # { p n < x : p n + i ≡ a i +1 (mod q ) for 0 ≤ i < r } . We expect that π ( x ; q , a ) ∼ li ( x ) /φ ( q ) r , but little is known: • If r = 2 and φ ( q ) = 2, then each a occurs infinitely often • Shiu: The pattern ( a , a , . . . , a ) occurs infinitely often

  13. Patterns of consecutive primes Let r ≥ 1 and a = ( a 1 , . . . , a r ), and set π ( x ; q , a ) := # { p n < x : p n + i ≡ a i +1 (mod q ) for 0 ≤ i < r } . We expect that π ( x ; q , a ) ∼ li ( x ) /φ ( q ) r , but little is known: • If r = 2 and φ ( q ) = 2, then each a occurs infinitely often • Shiu: The pattern ( a , a , . . . , a ) occurs infinitely often • Maynard: π ( x ; q , ( a , a , . . . , a )) ≫ π ( x )

  14. Patterns of consecutive primes Let r ≥ 1 and a = ( a 1 , . . . , a r ), and set π ( x ; q , a ) := # { p n < x : p n + i ≡ a i +1 (mod q ) for 0 ≤ i < r } . We expect that π ( x ; q , a ) ∼ li ( x ) /φ ( q ) r , but little is known: • If r = 2 and φ ( q ) = 2, then each a occurs infinitely often • Shiu: The pattern ( a , a , . . . , a ) occurs infinitely often • Maynard: π ( x ; q , ( a , a , . . . , a )) ≫ π ( x ) Question Are there biases between the different patterns a (mod q )?

  15. The primes (mod 10) Let π ( x 0 ) = 10 7 .

  16. The primes (mod 10) Let π ( x 0 ) = 10 7 . We find: a π ( x 0 ; 10 , a ) a π ( x 0 ; 10 , a ) 1 2 , 499 , 755 7 2 , 500 , 283 3 2 , 500 , 209 9 2 , 499 , 751

  17. The primes (mod 10) Let π ( x 0 ) = 10 7 . We find: a b π ( x 0 ; 10 , ( a , b )) a π ( x 0 ; 10 , a ) 1 1 2 , 499 , 755 7 2 , 500 , 283 3 7 9 3 2 , 500 , 209 9 2 , 499 , 751

  18. The primes (mod 10) Let π ( x 0 ) = 10 7 . We find: a b π ( x 0 ; 10 , ( a , b )) a π ( x 0 ; 10 , a ) 1 1 446 , 808 7 2 , 500 , 283 3 756,071 7 769,923 9 526,953 3 2 , 500 , 209 9 2 , 499 , 751

  19. The primes (mod 10) Let π ( x 0 ) = 10 7 . We find: a b π ( x 0 ; 10 , ( a , b )) a b π ( x 0 ; 10 , ( a , b )) 1 1 446 , 808 7 1 639 , 384 3 756,071 3 681,759 7 769,923 7 422,289 9 526,953 9 756,851 3 1 593 , 195 9 1 820 , 368 3 422,302 3 640,076 7 714,795 7 593,275 9 769,915 9 446,032

  20. The primes (mod 10) Let π ( x 1 ) = 10 8 . We find: a b π ( x 1 ; 10 , ( a , b )) a b π ( x 1 ; 10 , ( a , b )) 1 1 4,623,041 7 1 6,373,982 3 7,429,438 3 6,755,195 7 7,504,612 7 4,439,355 9 5,442,344 9 7,431,870 3 1 6,010,981 9 1 7,991,431 3 4,442,561 3 6,372,940 7 7,043,695 7 6,012,739 9 7,502,896 9 4,622,916

  21. The primes (mod 3) Let π ( x 0 ) = 10 7 .

  22. The primes (mod 3) Let π ( x 0 ) = 10 7 . We have π ( x 0 ; 3 , 1) = 4 , 999 , 505 and π ( x 0 ; 3 , 2) = 5 , 000 , 494

  23. The primes (mod 3) Let π ( x 0 ) = 10 7 . We have π ( x 0 ; 3 , 1) = 4 , 999 , 505 and π ( x 0 ; 3 , 2) = 5 , 000 , 494 while for r ≥ 2, we have a π ( x 0 ; 3 , a ) 1,1 1,2 2,1 2,2

  24. The primes (mod 3) Let π ( x 0 ) = 10 7 . We have π ( x 0 ; 3 , 1) = 4 , 999 , 505 and π ( x 0 ; 3 , 2) = 5 , 000 , 494 while for r ≥ 2, we have a π ( x 0 ; 3 , a ) 1,1 2,203,294 1,2 2,796,209 2,1 2,796,210 2,2 2,204,284

  25. The primes (mod 3) Let π ( x 0 ) = 10 7 . We have π ( x 0 ; 3 , 1) = 4 , 999 , 505 and π ( x 0 ; 3 , 2) = 5 , 000 , 494 while for r ≥ 2, we have a π ( x 0 ; 3 , a ) and a π ( x 0 ; 3 , a ) 1,1 2,203,294 1,1,1 928,276 1,2 2,796,209 1,1,2 1,275,018 2,1 2,796,210 1,2,1 1,521,062 2,2 2,204,284 1,2,2 1,275,147 2,1,1 1,275,018 2,1,2 1,521,191 2,2,1 1,275,147 2,2,2 929,137

  26. The primes (mod 3) Let π ( x 0 ) = 10 7 . We have π ( x 0 ; 3 , 1) = 4 , 999 , 505 and π ( x 0 ; 3 , 2) = 5 , 000 , 494 while for r ≥ 2, we have a π ( x 0 ; 3 , a ) and a π ( x 0 ; 3 , a ) 1,1 2,203,294 1,1,1 928,276 1,2 2,796,209 1,1,2 1,275,018 2,1 2,796,210 1,2,1 1,521,062 2,2 2,204,284 1,2,2 1,275,147 2,1,1 1,275,018 2,1,2 1,521,191 2,2,1 1,275,147 2,2,2 929,137 Observation The primes dislike to repeat themselves (mod q ).

  27. What’s the deal?

  28. What’s the deal? We conjecture that: • There are large secondary terms in the asymptotic for π ( x ; q , a )

  29. What’s the deal? We conjecture that: • There are large secondary terms in the asymptotic for π ( x ; q , a ) • The dominant factor is the number of a i ≡ a i +1 (mod q )

  30. What’s the deal? We conjecture that: • There are large secondary terms in the asymptotic for π ( x ; q , a ) • The dominant factor is the number of a i ≡ a i +1 (mod q ) • There are smaller, somewhat erratic factors that affect non-diagonal a

  31. The conjecture: explicit version Conjecture (LO & S) Let a = ( a 1 , . . . , a r ) with r ≥ 2 .

  32. The conjecture: explicit version Conjecture (LO & S) Let a = ( a 1 , . . . , a r ) with r ≥ 2 . Then � �� � π ( x ; q , a ) = li ( x ) 1 + c 1 ( q ; a )log log x + c 2 ( q ; a ) log − 7 / 4 x + O , φ ( q ) r log x log x

  33. The conjecture: explicit version Conjecture (LO & S) Let a = ( a 1 , . . . , a r ) with r ≥ 2 . Then � �� � π ( x ; q , a ) = li ( x ) 1 + c 1 ( q ; a )log log x + c 2 ( q ; a ) log − 7 / 4 x + O , φ ( q ) r log x log x where � r − 1 � c 1 ( q ; a ) = φ ( q ) φ ( q ) − # { 1 ≤ i < r : a i ≡ a i +1 ( mod q ) } , 2

  34. The conjecture: explicit version Conjecture (LO & S) Let a = ( a 1 , . . . , a r ) with r ≥ 2 . Then � �� � π ( x ; q , a ) = li ( x ) 1 + c 1 ( q ; a )log log x + c 2 ( q ; a ) log − 7 / 4 x + O , φ ( q ) r log x log x where � r − 1 � c 1 ( q ; a ) = φ ( q ) φ ( q ) − # { 1 ≤ i < r : a i ≡ a i +1 ( mod q ) } , 2 and c 2 ( q ; a ) is complicated but explicit.

  35. An example Example Let q = 3 or 4.

  36. An example Example Let q = 3 or 4. Then � � log log x �� � � π ( x ; q , ( a , b )) = li ( x ) 2 log x + log 2 π/ q x 1 ± + O . log 11 / 4 x 4 2 log x

  37. An example Example Let q = 3 or 4. Then � � log log x �� � � π ( x ; q , ( a , b )) = li ( x ) 2 log x + log 2 π/ q x 1 ± + O . log 11 / 4 x 4 2 log x Conjecture (LO & S) Let q = 3 or 4 . If a �≡ b ( mod q ) , then for all x > 5 , π ( x ; q , ( a , b )) > π ( x ; q , ( a , a )) .

  38. Comparison with numerics: q = 3 x π ( x ; 3 , (1 , 1)) π ( x ; 3 , (1 , 2)) 10 9 1 . 132 · 10 7 1 . 411 · 10 7 Actual 1 . 156 · 10 7 1 . 387 · 10 7 Conj.

  39. Comparison with numerics: q = 3 x π ( x ; 3 , (1 , 1)) π ( x ; 3 , (1 , 2)) 10 9 1 . 132 · 10 7 1 . 411 · 10 7 Actual 1 . 137 · 10 7 1 . 405 · 10 7 Pred. 1 . 156 · 10 7 1 . 387 · 10 7 Conj.

Recommend


More recommend