ultraviolet dynamics of fermions and gravity
play

Ultraviolet Dynamics of Fermions and Gravity Cold Quantum Cofgee on - PowerPoint PPT Presentation

Ultraviolet Dynamics of Fermions and Gravity Cold Quantum Cofgee on June 26, 2018 Marc Schifger , Heidelberg University with A. Eichhorn and S. Lippoldt arXiv 18xx.xxxxx with A. Eichhorn, S. Lippoldt, J. M. Pawlowski and M. Reichert arXiv


  1. Ultraviolet Dynamics of Fermions and Gravity Cold Quantum Cofgee on June 26, 2018 Marc Schifger , Heidelberg University with A. Eichhorn and S. Lippoldt arXiv 18xx.xxxxx with A. Eichhorn, S. Lippoldt, J. M. Pawlowski and M. Reichert arXiv 1807.xxxxx

  2. Motivation for Quantum Gravity

  3. • Simplest version of a black hole: • For E G N : Why quantum gravity? theory [LIGO Collaboration, 2016] QG efgects are expected c M PL . GR is not a fundamental General Relativity: physical singularity at r Schwarzschild black hole collaboration Existence of black holes by LIGO 2 • several high precision tests • latest confjrmation:

  4. • For E G N : Why quantum gravity? theory Source: Northern Arizona University QG efgects are expected c M PL 2 General Relativity: Schwarzschild black hole collaboration Existence of black holes by LIGO • several high precision tests • latest confjrmation: • Simplest version of a black hole: physical singularity at r = 0 . ⇒ GR is not a fundamental

  5. Why quantum gravity? Schwarzschild black hole Source: Northern Arizona University QG efgects are expected theory General Relativity: 2 collaboration Existence of black holes by LIGO • several high precision tests • latest confjrmation: • Simplest version of a black hole: physical singularity at r = 0 . ⇒ GR is not a fundamental √ � c • For E > M PL = G N :

  6. • Triviality problem in scalar [M. Gockeler et al., 1997] , • Singularities might carry over to [D. Buttazzo, 2013] QG might cure Landau poles breakdown beyond Planck scale SM is only efgective theory SM Why quantum gravity with matter? [H. Gies and J. Jäckel, 2004] Standard Model: [J. Fröhlich, 1982] abelian gauge theories and 3 • well tested low energy model • formulated as QFT

  7. • Singularities might carry over to Why quantum gravity with matter? Standard Model: abelian gauge theories [J. Fröhlich, 1982] [H. Gies and J. Jäckel, 2004] SM SM is only efgective theory breakdown beyond Planck scale QG might cure Landau poles Image credits: Fleur Versteegen 3 • well tested low energy model • formulated as QFT • Triviality problem in scalar ϕ 4 and [M. Gockeler et al., 1997] ,

  8. Why quantum gravity with matter? Standard Model: abelian gauge theories [J. Fröhlich, 1982] [H. Gies and J. Jäckel, 2004] SM Image credits: Fleur Versteegen 3 • well tested low energy model • formulated as QFT • Triviality problem in scalar ϕ 4 and [M. Gockeler et al., 1997] , • Singularities might carry over to → SM is only efgective theory → breakdown beyond Planck scale → QG might cure Landau poles

  9. Why quantum gravity with matter? [M. Gockeler et al., 1997] , compatibility with SM in IR provides test for quantum theory of gravity Image credits: Fleur Versteegen SM Standard Model: [H. Gies and J. Jäckel, 2004] [J. Fröhlich, 1982] abelian gauge theories 3 • well tested low energy model • formulated as QFT • Triviality problem in scalar ϕ 4 and • Singularities might carry over to → SM is only efgective theory → breakdown beyond Planck scale → QG might cure Landau poles

  10. Outline Motivation for Quantum Gravity Asymptotically Safe Quantum Gravity Efgective Universality for Gravity and Matter Induced Couplings at UV Fixed Point 4

  11. Asymptotically Safe Quantum Gravity

  12. • Efgective fjeld theory approach: Loss of predictivity at M PL How to quantize Gravity? [G. ’t Hooft and M. J. G. Veltman, 1974] [M. H. Gorofg and A. Sagnotti, 1986] [J. F. Donoghue and B. R. Holstein, 2015] 6 • [ G N ] = 2 − d ⇒ GR is perturbatively non-renormalizable in d = 4

  13. How to quantize Gravity? [G. ’t Hooft and M. J. G. Veltman, 1974] [M. H. Gorofg and A. Sagnotti, 1986] [J. F. Donoghue and B. R. Holstein, 2015] 6 • [ G N ] = 2 − d ⇒ GR is perturbatively non-renormalizable in d = 4 • Efgective fjeld theory approach: Loss of predictivity at M PL

  14. • Asymptotic safety Asymptotic safety [S. Weinberg, 1979] all dimensionless couplings enter a scale invariant regime interacting theory in the UV non-perturbative renormalizability CMS Collaboration, 2017 7 • Asymptotic freedom ◮ all couplings vanish in the UV ◮ perturbative renormalizability

  15. Asymptotic safety • Asymptotic freedom • all couplings vanish in the UV • perturbative renormalizability [S. Weinberg, 1979] a scale invariant regime renormalizability A. Eichhorn, 2017 7 • Asymptotic safety ◮ all dimensionless couplings enter ◮ interacting theory in the UV ◮ non-perturbative

  16. Search for Asymptotic safety gi dimensional quantum 8 Study RG-fmow of dimensionless couplings g i = ¯ g i k − d ¯ β g i ( ⃗ g ) = k ∂ k g i = − d ¯ + f i ( ⃗ g ) g i g i ⇒ balancing of dimensional term with quantum correction can lead to AS

  17. • Solution to linearized fmow equations g i k Critical Exponents i eig M with j k k j c j V i j g i 9 j • Linearized β -functions � ( ∂β g i ) � ∑ j ) 2 ) � � g = g ∗ ( g j − g ∗ ( ( g j − g ∗ β g i = β g i g = g ∗ + j ) + O � � ∂ g j � �

  18. Critical Exponents j with j c j V i j 9 • Linearized β -functions � ( ∂β g i ) � ∑ j ) 2 ) � � g = g ∗ ( g j − g ∗ ( ( g j − g ∗ β g i = β g i g = g ∗ + j ) + O � � ∂ g j � � • Solution to linearized fmow equations ) − Θ j ( k ∑ g i ( k ) = g ∗ i + − eig ( M ) = Θ i . k 0

  19. Critical Exponents j dimensional i with 9 c j V i j • Solution to linearized fmow equations ) − Θ j ( k ∑ g i ( k ) = g ∗ i + − eig ( M ) = Θ i . k 0 Re (Θ i ) < 0 • irrelevant direction • g i ( k ) k →∞ − − − → g ∗ • c j drop out • g ∗ i is a prediction

  20. Critical Exponents with relevant direction i dimensional i 9 j c j V i j • Solution to linearized fmow equations ) − Θ j ( k ∑ g i ( k ) = g ∗ i + − eig ( M ) = Θ i . k 0 Re (Θ i ) < 0 Re (Θ i ) > 0 • relevant direction • irrelevant direction • g i ( k ) k →∞ − − − → g ∗ • c j remain • adjust c j to reach g ∗ • c j drop out • g ∗ • one free parameter for each i is a prediction

  21. Critical Exponents with test Number of relevant directions determines predictivity relevant direction i dimensional i 9 j j c j V i • Solution to linearized fmow equations ) − Θ j ( k ∑ g i ( k ) = g ∗ i + − eig ( M ) = Θ i . k 0 Re (Θ i ) < 0 Re (Θ i ) > 0 • relevant direction • irrelevant direction • g i ( k ) k →∞ − − − → g ∗ • c j remain • adjust c j to reach g ∗ • c j drop out • g ∗ • one free parameter for each i is a prediction

  22. Critical Exponents [A. Eichhorn, 2017] relevant direction 9 Re (Θ i ) < 0 • irrelevant direction • g ∗ i is a prediction Re (Θ i ) > 0 • relevant direction • one free parameter for each

  23. Tool: Functional Renormalization Group k [H. Gies, 2006] Non-Perturbative Renormalisation Group Equation [Wetterich, 1993], [Reuter, 1996] 10 k ∂ k Γ k = 1 (( ) = 1 ) − 1 Γ (2) + R k k ∂ k R k 2 STr 2 Γ k = scale dependent efgective action R k = IR regulator • exact 1-loop equation • extract β -functions via projection • truncation needed → not closed

  24. Efgective Universality for Gravity and Matter

  25. G h • two difgerent ”avatars” of the Newton coupling Avatars of the Newton coupling N f G h 12 • Einstein-Hilbert gravity minimally coupled to fermions, i.e. 1 ∫ d 4 x √ g ( R − 2Λ) + ∫ d 4 x √ g ¯ ψ i / ∑ S = − ∇ ψ i 16 π G N i =1

  26. Avatars of the Newton coupling N f 12 • Einstein-Hilbert gravity minimally coupled to fermions, i.e. 1 ∫ d 4 x √ g ( R − 2Λ) + ∫ d 4 x √ g ¯ ψ i / ∑ S = − ∇ ψ i 16 π G N i =1 √ √ ∼ ∼ G h ¯ G 3 h ψψ • two difgerent ”avatars” of the Newton coupling

  27. • On the quantum level • Efgective universality: • Compare both avatars on the level of their G h G h Efgective universality G G G G G h G G G G -functions at G h [A. Eichhorn, P. Labus, J. M. Pawlowski and M. Reichert, 2018] Quantitative agreement of difgerent avatars of the Newton coupling set of identities (mSTI’s) relates avatars Gauge fjxing, Regulator [Weinberg, 1995] 2-loop universality is lost G N 13 • Classically: Difgeomorphism invariance ⇒ there should only be one Newton coupling

  28. • Efgective universality: • Compare both avatars on the level of their G h G h G G G G G h G G G G Efgective universality G h -functions at [A. Eichhorn, P. Labus, J. M. Pawlowski and M. Reichert, 2018] Quantitative agreement of difgerent avatars of the Newton coupling set of identities (mSTI’s) relates avatars [Weinberg, 1995] 13 • Classically: Difgeomorphism invariance ⇒ there should only be one Newton coupling • On the quantum level ◮ [ G N ] = − 2 ⇒ 2-loop universality is lost ◮ Gauge fjxing, Regulator

Recommend


More recommend