transition and turbulence in mhd at
play

Transition and turbulence in MHD at very strong magnetic fields - PowerPoint PPT Presentation

Transition and turbulence in MHD at very strong magnetic fields Prasanta Dey, Yurong Zhao, Oleg Zikanov University of Michigan Dearborn, USA Dmitry Krasnov, Thomas Boeck, Andre Thess Ilmenau University of Technology, Germany Yaroslav


  1. Transition and turbulence in MHD at very strong magnetic fields Prasanta Dey, Yurong Zhao, Oleg Zikanov University of Michigan – Dearborn, USA Dmitry Krasnov, Thomas Boeck, Andre Thess Ilmenau University of Technology, Germany Yaroslav Listratov, Valentin Sviridov Moscow Power Engineering Institute, Russia Support: US National Science Foundation, German Science Foundation, Russian Ministry of Education and Science

  2. F J B Lorentz Force b ( ) Electric current J E u B Induced B magnetic field Flow u Imposed Magnetic field

  3. MHD Approximation Assumption: Instantaneous propagation of electromagnetic radiation, L / τ <<c. τ , L – typical time and length scales Neglect: Displacement currents, ϑ u in Ohm’s law, ϑ E in electromagnetic force 1 B 2 0 j u B B t 0 j E u B F j B

  4. MHD flows Planetary dynamo Sunspots Dipole magnetic field Azimuthal magnetic field Mantle Nature 2002 Solid inner Liquid outer core core Magnetic confinement fusion www.iter.org

  5. Metallurgical applications • Control of nozzle jet in continuous steel casting • Crystal growth • Primary aluminum production in Hall-Héroult cells • Induction heating and stirring • Vacuum arc remelting • Magnetic valves • Electromagnetic pumps • Electromagnetic flow meters • …

  6. Fusion enabling technology Cooling/breeding blankets and divertors for TOKAMAK reactors

  7. Flows of liquid metals (Li, Li-Pb, FLiBe) in strong magnetic fields

  8. Magnetic Reynolds number 1 B 2 u B B Re t σ – Electrical conductivity m μ 0 – Magnetic permeability Re m =UL/ η =UL σμ 0 of vacuum σ [ Ω -1 m -1 ] η [m 2 s -1 ] Liquid Sea water 5 6.3x10 6 Al (750 C) 4x10 6 0.2 0.7x10 6 Steel (1500 C) 1 6x10 6 Na (400 C) 0.13 10 6 Hg (20 C) 0.8 3.3x10 6 GaInSn (20 C) 0.25

  9. Magnetic Reynolds number Dipole magnetic field Azimuthal magnetic field Mantle Solid inner Liquid outer core core 10 2 10 8 0.01 - 1 Re m

  10. MHD flows at low Re m (quasi-static approximation) 2 1 Ha u 2 ( ) u u u j e p b Re Re t u 0 j u e b 2 u b UL Re , Ha BL

  11. Effect of magnetic field on flow structures (far from walls) 1 u d Joule dissipation: 2 dV dV dV 2 dt 1 2 J dV

  12. Effect of magnetic field on flow structures (far from walls) 1 u d Joule dissipation: 2 dV dV dV 2 dt 1 2 MHD flows are found in laminar or J dV transitional state more often than ordinary hydrodynamic flows

  13. Effect of magnetic field on flow structures (far from walls) 1 u d Joule dissipation: 2 dV dV dV 2 dt 1 2 MHD flows are found in laminar or J dV transitional state more often than ordinary hydrodynamic flows With magnet etic c Without t field magneti etic c field Anisotropy of flow structures: B

  14. Anisotropy of gradients at low Re m 2 2 B u 1 [ ] F F u 2 z 2 2 2 k B B ˆ ˆ B ˆ ˆ ˆ B =0 2 [ ] z cos F F u u u 2 k ˆ 2 1 2 2 ( ) | ( , ) | cos k B u k t 3D Isotropic Instability of 2D Magnetic 3D Anisotropic structures, Field Nonlinear Interaction Quasi-2D

  15. I. Archetypal MHD flow – duct with insulating walls in a uniform transverse magnetic field

  16. Flow structure: Flat core and MHD boundary layers δ ~Ha -1/2 – Sidewall layer δ ~Ha -1 Hartmann layer velocity current Ha=10 Ha=50

  17. Question Ha Transition between laminar and turbulent flow regimes Re R=Re/Ha=200 – 250 or 350 – 400 ?

  18. Numerical method – Direct Numerical Simulations Finite difference solver (Krasnov et al, Comp. Fluids 2011) Time advancing: Adams-Bashforth/BWD 2nd order explicit with projection method for pressure/incompressibility Grid arrangement: Structured collocated grid with staggered fluxes Viscous term: 2nd-order finite differences Non-linear term: 2nd-order, divergent form, highly conservative operator (Morinishi et.al. 1998) MHD term: 2nd-order, charge-conserving scheme for potential eq. and Lorentz force (Ni et.al. 2007) Poisson solver: Fourier expansion + 2D direct solver Parallelization: Hybrid parallelization: MPI + OpenMP

  19. Parameters, Grid, Boundary conditions • Re=10 5 (in terms of mean velocity and half- width) • Ha=0, 100, 200, 300, 350, 400 • Domain size: 4 π x2x2 • Numerical resolution: 2048x768x768 • Nearly Chebyshev-Gauss-Lobatto wall clustering • Electrically insulating walls • Periodic inlet/exit

  20. Instantaneous streamwise velocity Ha=0 Ha=100 B

  21. Instantaneous streamwise velocity Ha=200 Ha=300 B Laminar flow at Ha=400

  22. Turbulence in sidewall layers Ha=350 2 nd eigenvalue of S ik S kj + Ω ik Ω k j (Jeong, Hussein, JFM 1995)

  23. Summary of results Ha N U cl Re τ ,y Re τ ,z 0 0 1.1768 4253 4253 100 0.1 1.2304 3462 5269 200 0.4 1.3011 2487 5099 300 0.9 1.1466 1993 5865 350 1.225 1.1177 1901 6255 400 1.6 1.0465 1543 6512 (laminar) Time-averaged in fully developed flow

  24. Mean streamwise velocity B Ha=0 Ha=100 Ha=300 Ha=200

  25. Log-layer? γ =z + dU + /dz + γ =y + dU + /dy +

  26. Conclusions • Transitional flow regimes with turbulence restricted to sidewall layers in a wide range of Ha • Within sidewall layers, turbulence is small-scale and approaching isotropy near walls, but becomes large-scale, weak, and strongly anisotropic toward the center • Non-trivial transformation of mean flow profile in the spanwise direction: lin-log Krasnov et al, J. Fluid Mech. 2012, 704 , 421-446

  27. Fully laminar Ha Fully turbulent Re

  28. II. Mixed convection with strong transverse magnetic field Flow of Hg in a horizontal pipe with transverse magnetic field: Institute of High Temperatures RAS Pipe inner diameter: d=19 mm Walls: stainless steel 0.5 mm Length of working segment: 2m Heated length: 0.812 m (43d) Uniform magn. field: 0.5m (26d) Max. heat flux: q<55 kW/m 2 Max. magn. field: B<1T

  29. Considered Case • Horizontal pipe • Perpendicular horizontal magnetic field • Heated lower half • Thermally insulated upper half Re d =10 4 Ha d =0, 100, 300, 500 Gr d =8.3x10 7 (q=35 kW/m 2 ) Pr=0.022

  30. Experimental Temperature fluctuations: r=0.7R, bottom, x/d=40 data 4 2 0 Ha=0 -2 t, c -4 0 1 2 3 4 5 6 7 8 9 10 4 2 0 Ha=100 -2 t, c -4 0 1 2 3 4 5 6 7 8 9 10 4 2 Ha=300 0 -2 t, c -4 0 1 2 3 4 5 6 7 8 9 10

  31. Experimental data Ha=300

  32. Hypothesis Ha=100 Ha=300

  33. Linear stability analysis: Base flow B Ha d =300 U x 0.34 1.14 0.30 1.06 0.27 0.98 0.23 0.91 0.20 0.83 0.16 0.76 0.13 0.68 0.09 0.61 0.05 0.53 0.02 0.45 -0.02 0.38 -0.05 0.30 -0.09 0.23 -0.12 0.15 B -0.16 0.08

  34. Linear Stability Analysis: 2D (streamwise-uniform) mode Volume-averaged perturbations: E2d, E θ 2d – x-independent mode E3d, E θ 3d – mode of x-periodicity λ -1 -1 10 10 -2 -2 10 10 -3 -3 10 10 -4 -4 10 10 -5 -5 10 10 E 2D E 2D -6 -6 10 10 -7 -7 10 10 Ha=100 Ha=300 -8 -8 10 10 Ha=500 -9 -9 10 10 -10 -10 10 10 50 100 150 200 50 100 150 200 t t

  35. Linear Stability Analysis: 2D (streamwise-uniform) mode Ha=100 Ha=300 u u 0.15 2.00E-02 0.12 1.61E-02 0.09 1.21E-02 0.06 8.21E-03 0.04 4.29E-03 0.01 3.57E-04 -0.02 -3.57E-03 -0.05 -7.50E-03 -0.08 -1.14E-02 -0.11 -1.54E-02 -0.14 -1.93E-02 -0.16 -2.32E-02 -0.19 -2.71E-02 g -0.22 B -3.11E-02 -0.25 -3.50E-02 Ha=500 Ha=100 u + 5.00E-03 0.34 3.79E-03 0.30 2.57E-03 0.27 1.36E-03 0.23 1.43E-04 0.20 -1.07E-03 0.16 -2.29E-03 0.13 -3.50E-03 0.09 -4.71E-03 0.05 -5.93E-03 0.02 -7.14E-03 -0.02 -8.36E-03 -0.05 -9.57E-03 -0.09 -1.08E-02 -0.12 -1.20E-02 -0.16

  36. Linear Stability Analysis: 2D + 3D modes Example: Ha d =300, λ =1.0d -4 10 -6 10 E2d E 2d E3d -8 10 E 3d Energy -10 10 -12 10 Exponential growth -14 10 E3d E 3d exp(2 t) -16 10 0 20 40 60 80 100 t

  37. Linear Stability Analysis Example: Ha d =300, λ =1.0d -0.0075 0.115 Point signals of -0.0077 velocity and temperature during 0.114 u x exponential growth -0.0079 0.113 -0.0081 0.112 50 60 70 80 90 100 t

  38. Linear Stability Analysis t=100, horizontal cross-section Example: Ha d =300, λ =1.0d through pipe axis Temperature perturbations Vertical velocity perturbations 1 1 0.75 0.75 0.5 0.5 0.25 0.25 R R 0 0 -0.25 -0.25 -0.5 -0.5 -0.75 -0.75 -1 -1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 X X Magnetic field Flow

  39. Linear Stability Analysis Temperature and velocity Example: Ha d =300, λ =1.0d perturbations 1 0.75 t=100, vertical 0.5 cross-section through pipe axis 0.25 R 0 -0.25 -0.5 -0.75 -1 -1 -0.5 0 0.5 1 X

  40. Linear Stability Analysis Ha d =300 Growth rate Phase velocity 0.25 1.2 0.2 c= /period 0.15 1.1 0.1 1 0.05 0 0.9 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4 /d /d Fastest growing mode: λ =0.9d, period T=0.8 Dimensional frequency ~ 3.2 Hz (compare with 2-3 Hz in experiment)

  41. Linear Stability Analysis Ha d =500 Phase Velocity Growth rate 0.25 1.2 0.2 c= /period 0.15 1.1 0.1 1 0.05 0 0.9 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4 /d /d Fastest growing mode: λ =0.9d, period T=0.8 Growth rate ~ 10% higher than at Ha=300

Recommend


More recommend