totally symmetric partial latin squares with trivial
play

Totally Symmetric Partial Latin Squares with Trivial Autotopism - PowerPoint PPT Presentation

Outline Introduction Totally symmetric Latin squares without symmetry Conclusion Totally Symmetric Partial Latin Squares with Trivial Autotopism Groups Trent G. Marbach trent.marbach@outlook.com Joint work with Ra ul Falc on


  1. Outline Introduction Totally symmetric Latin squares without symmetry Conclusion Totally Symmetric Partial Latin Squares with Trivial Autotopism Groups Trent G. Marbach trent.marbach@outlook.com Joint work with Ra´ ul Falc´ on (University of Seville) and Rebecca Stones (Nankai University) Nankai University May 21, 2018 Trent G. Marbach trent.marbach@outlook.com Joint work with Ra´ Totally Symmetric Partial Latin Squares with Trivial Autotopism ul Falc´ on (University of Seville) and Rebecca

  2. Outline Introduction Totally symmetric Latin squares without symmetry Conclusion 1 Introduction Latin squares Partial Latin squares Isotopisms 2 Totally symmetric Latin squares without symmetry Smaller volumes Larger volumes 3 Conclusion Trent G. Marbach trent.marbach@outlook.com Joint work with Ra´ Totally Symmetric Partial Latin Squares with Trivial Autotopism ul Falc´ on (University of Seville) and Rebecca

  3. Outline Latin squares Introduction Partial Latin squares Totally symmetric Latin squares without symmetry Isotopisms Conclusion Latin squares Definition A Latin square of order n is an n × n array filled with entries from { 1 , . . . , n } , such that each row and each column is a permutation of { 1 , . . . , n } . 2 1 3 4 3 2 4 1 1 4 2 3 4 3 1 2 Trent G. Marbach trent.marbach@outlook.com Joint work with Ra´ Totally Symmetric Partial Latin Squares with Trivial Autotopism ul Falc´ on (University of Seville) and Rebecca

  4. Outline Latin squares Introduction Partial Latin squares Totally symmetric Latin squares without symmetry Isotopisms Conclusion Partial Latin squares Definition A partial Latin square , L , of order n is an n × n array with cells either empty or filled with elements from the set { 1 , 2 , . . . , n } , such that each row and each column contains each element at most once. 1 5 3 • 2 5 2 1 • • • 4 2 1 3 • 1 5 • 4 4 3 • 5 1 Trent G. Marbach trent.marbach@outlook.com Joint work with Ra´ Totally Symmetric Partial Latin Squares with Trivial Autotopism ul Falc´ on (University of Seville) and Rebecca

  5. Outline Latin squares Introduction Partial Latin squares Totally symmetric Latin squares without symmetry Isotopisms Conclusion Isotopisms Definition An isotopism θ = ( θ r , θ c , θ s ) acts on a partial Latin square by permuting its rows by θ r , its columns by θ c , and its symbols by θ s . 2 1 3 4 4 3 1 2 3 2 4 1 2 1 3 4 θ r = (1 , 2 , 3 , 4) 1 4 2 3 3 2 4 1 4 3 1 2 1 4 2 3 Trent G. Marbach trent.marbach@outlook.com Joint work with Ra´ Totally Symmetric Partial Latin Squares with Trivial Autotopism ul Falc´ on (University of Seville) and Rebecca

  6. Outline Latin squares Introduction Partial Latin squares Totally symmetric Latin squares without symmetry Isotopisms Conclusion Isotopisms Example θ = ((1 , 2 , 3 , 4) , (1 , 2 , 3 , 4) , (1 , 3)(2 , 4)) θ r θ c θ s 1 4 1 2 3 3 4 1 2 1 2 3 4 · · · 2 3 4 1 1 1 3 · · · · · · · · · 3 4 1 2 2 3 4 1 1 2 3 4 3 4 1 2 4 1 2 3 3 4 1 2 2 3 4 1 4 1 2 3 Trent G. Marbach trent.marbach@outlook.com Joint work with Ra´ Totally Symmetric Partial Latin Squares with Trivial Autotopism ul Falc´ on (University of Seville) and Rebecca

  7. Outline Latin squares Introduction Partial Latin squares Totally symmetric Latin squares without symmetry Isotopisms Conclusion Autotopisms Definition An autotopism of a partial Latin square L is an isotopism θ such that θ ( L ) = L . Trent G. Marbach trent.marbach@outlook.com Joint work with Ra´ Totally Symmetric Partial Latin Squares with Trivial Autotopism ul Falc´ on (University of Seville) and Rebecca

  8. Outline Latin squares Introduction Partial Latin squares Totally symmetric Latin squares without symmetry Isotopisms Conclusion Autotopisms Example θ = ((1 , 2 , 3 , 4) , (1 , 2 , 3 , 4) , (1 , 3)(2 , 4)) θ r θ c θ s 2 3 4 4 1 2 4 1 2 2 3 4 · · · · 2 4 1 2 3 4 4 2 3 2 4 1 · · · · 3 4 2 2 4 1 1 2 4 3 4 2 · · · · 4 1 2 3 4 2 2 3 4 4 1 2 · · · · Trent G. Marbach trent.marbach@outlook.com Joint work with Ra´ Totally Symmetric Partial Latin Squares with Trivial Autotopism ul Falc´ on (University of Seville) and Rebecca

  9. Outline Latin squares Introduction Partial Latin squares Totally symmetric Latin squares without symmetry Isotopisms Conclusion Conjugation Definition A conjugate of a partial Latin square L = { ( l 1 , l 2 , l 3 ) } is one of the six Latin squares L σ = { ( l σ (1) , l σ (2) , l σ (3) ) } for σ ∈ S 3 . Definition A partial Latin square is totally symmetric if all six of its conjugates are equal. Trent G. Marbach trent.marbach@outlook.com Joint work with Ra´ Totally Symmetric Partial Latin Squares with Trivial Autotopism ul Falc´ on (University of Seville) and Rebecca

  10. Outline Introduction Smaller volumes Totally symmetric Latin squares without symmetry Larger volumes Conclusion Our question Question For what s does there exist a totally symmetric Latin square of volume s with only trivial autotopism? Trent G. Marbach trent.marbach@outlook.com Joint work with Ra´ Totally Symmetric Partial Latin Squares with Trivial Autotopism ul Falc´ on (University of Seville) and Rebecca

  11. Outline Introduction Smaller volumes Totally symmetric Latin squares without symmetry Larger volumes Conclusion Smaller volumes Theorem 1 For n ≥ 13, there exists an m -entry totally symmetric partial Latin square of order n with a trivial autotopism group for all m satisfying 6 n − 17 ≤ m ≤ n 2 − 10 n + 8 . Trent G. Marbach trent.marbach@outlook.com Joint work with Ra´ Totally Symmetric Partial Latin Squares with Trivial Autotopism ul Falc´ on (University of Seville) and Rebecca

  12. Outline Introduction Smaller volumes Totally symmetric Latin squares without symmetry Larger volumes Conclusion Smaller volumes 0 10 9 8 7 6 5 4 3 2 1 10 · 8 7 6 4 3 2 0 · · 9 8 1 0 · · · · · · · 8 7 1 0 · · · · · · · 7 6 1 0 · · · · · · · 6 0 · · · · · · · · · 5 4 1 0 · · · · · · · 4 3 1 0 · · · · · · · 3 2 1 0 · · · · · · · 2 0 · · · · · · · · · 1 0 · · · · · · · · · Trent G. Marbach trent.marbach@outlook.com Joint work with Ra´ Totally Symmetric Partial Latin Squares with Trivial Autotopism ul Falc´ on (University of Seville) and Rebecca

  13. Outline Introduction Smaller volumes Totally symmetric Latin squares without symmetry Larger volumes Conclusion Smaller volumes 0 10 9 8 7 6 5 4 3 2 1 10 · 8 7 6 4 3 2 0 · · 9 8 1 0 · · · · · · · 8 7 1 0 · · · · · · · 7 6 1 0 · · · · · · · 6 5 0 · · · · · · · · 5 4 1 0 · · · · · · · 4 3 1 0 · · · · · · · 3 2 1 0 · · · · · · · 2 0 · · · · · · · · · 1 0 · · · · · · · · · Trent G. Marbach trent.marbach@outlook.com Joint work with Ra´ Totally Symmetric Partial Latin Squares with Trivial Autotopism ul Falc´ on (University of Seville) and Rebecca

  14. Outline Introduction Smaller volumes Totally symmetric Latin squares without symmetry Larger volumes Conclusion Larger volumes Theorem 2 For odd n ≥ 35 there exists an m -entry totally symmetry partial Latin square of order n with trivial autotopism group for n 2 − 10 n + 9 ≤ m ≤ n 2 − 2 | L | − 1, where 4 ≤ | L | ≤ 24. Trent G. Marbach trent.marbach@outlook.com Joint work with Ra´ Totally Symmetric Partial Latin Squares with Trivial Autotopism ul Falc´ on (University of Seville) and Rebecca

  15. Outline Introduction Smaller volumes Totally symmetric Latin squares without symmetry Larger volumes Conclusion Larger volumes 0 8 7 10 9 · · · · · · 7 6 9 8 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 7 1 · · · · · · · · · 8 6 1 0 · · · · · · · 7 9 0 1 · · · · · · · 10 8 1 0 · · · · · · · 9 0 · · · · · · · · · Trent G. Marbach trent.marbach@outlook.com Joint work with Ra´ Totally Symmetric Partial Latin Squares with Trivial Autotopism ul Falc´ on (University of Seville) and Rebecca

  16. Outline Introduction Smaller volumes Totally symmetric Latin squares without symmetry Larger volumes Conclusion Larger volumes y x z x x z y · { x , y , z } = ↔ y z x · z y y z x · Trent G. Marbach trent.marbach@outlook.com Joint work with Ra´ Totally Symmetric Partial Latin Squares with Trivial Autotopism ul Falc´ on (University of Seville) and Rebecca

  17. Outline Introduction Smaller volumes Totally symmetric Latin squares without symmetry Larger volumes Conclusion Larger volumes x 1 x 2 y 1 y 2 y α 0 n ′ 1 . . 2 . 5 3 4 Trent G. Marbach trent.marbach@outlook.com Joint work with Ra´ Totally Symmetric Partial Latin Squares with Trivial Autotopism ul Falc´ on (University of Seville) and Rebecca

Recommend


More recommend