toppcoat
play

TOPPCOAT wards design and rocessing of advanced, com etitive - PowerPoint PPT Presentation

EU joint project TOPPCOAT wards design and rocessing of advanced, com etitive thermal barrier ing systems Aerodays2011 Matthias Karger, Robert Vaen IEK(1, Forschungszentrum Jlich GmbH Outline Short


  1. EU joint project TOPPCOAT �� wards design and � rocessing of advanced, com � etitive thermal barrier ���� ing systems Aerodays2011 Matthias Karger, Robert Vaßen IEK(1, Forschungszentrum Jülich GmbH �

  2. Outline • Short project description • Main objectives • Development of new TBC systems • Testing new TBC systems • Coating of real components • Summary, outlook �

  3. Project Coordinator Forschungszentrum Jülich Budget 4.2 Mio.€, (EC contribution 2.1 Mio. €) Period Feb. 2006 – Jan. 2010 Consortium �

  4. Project plan Main objective: Significant improvement of thermal barrier coating systems used for gas turbine applications Basics ��� Management ��� Technical specifications, material procurement ��� Powders and materials Development Evaluation ��� Interface modification ��� Transfer & application of technology ��� Advanced technology for manufacture of ��� Final evaluation under close(to(service strain tolerant coatings conditions ��� Screening of key properties and full characterisation Improve APS coating lifetimes comparable Increase temperature capability to those of EB(PVD (segmentation, 3D interface) Increase engine efficiency Introduce gas phase processes for industrial application (coating of complex Provide cost effective alternative to EB(PVD shaped specimen) �

  5. Project approaches for new TBC systems ����������������������� to induce �������������������� with seg.cracks /stop horizontal cracks conventional feedstock •Highly segmented coatings •Feedstock: fused and crushed or spray dried YSZ �!��������"� •Advanced APS process with nano sized feedstock or alternative TBC material �!���������� •Feedstock: suspension with •Advanced processes using gas agglomerated nano particles phase deposition •Processes: LPPS(TF, PE(CVD Transfer of technology � coating of real components �

  6. IP / know how situation at project start: T.A. Taylor, Patent (1991) P. Bengtsson, J. Wigren (1999) M. Madhwal, E. H. Jordan, M. Gell (2004) S. Ahmaniemi (2004) H. Guo, R. Vaßen, D. Stöver (2005) State of the art: 3(5 cracks/mm �

  7. Vertical structured TBCs Compressive stress level lower at surface �����������"����)��"$�����������% �����"�������� ������������������� (�� �$�����������&�%��!�'� ���"��%���!�* +�"�,����� #������"����$��$����������% (�� �

  8. Advanced APS coatings Milestones: Coatings on bond(coated substrates • Plasma(sprayed coatings with ��%��������� ����& ��������� - �� ����&� �� )� • Gas(phase deposited coatings with '���%����$�* ��"$����* !�"").����� structure • Process conditions for ������% �� ����"�, �'���� ����� established �������������������� with conventional feedstock • Highly segmented coatings 500Im Triplex II technology F4 technology Feedstock: 8YSZ fused & crushed (TIAG) Feedstock: 8YSZ spray dried (SM) Porosity: Overall: ~6% (Mercury porosimetry) Crack density: ~9 cracks/mm @500Im thickness Crack density: ~9 cracks/mm @500Im thickness Further development of Taylor (1991), Bengtsson et.al. (1999), state of the art were 3(4 cracks/mm �

  9. Interface modifications New processes PVD(LPPS (fka LPPS(TF) �����"����1�� �#/)0��� •2 – 5 mbar •High power input •Enables growth of columnar structures 500Im Surface modified by application of laser(cladded 3D structures to induce seg.cracks /stop horizontal cracks �

  10. New processes Suspension plasma spraying SPS plasma jet injecton SPS coating Triplex II •Nano suspension, agglomaterated, nano sized YSZ particles in ethanol •High segmentation crack density, combined with high porosity values (~35%) •Low thermal conductivity ��

  11. Midterm status Reference systems ��"���������������2� �����2� Microstructure 21 bondcoat/topcoat systems Furnace cycling (~250 specimen) tested 1 st Burner rig test commercial PtAl+EB(PVD • 2 Systems 3D interface APS top coat reference • VPS bondcoat, F4 APS top coat • VPS bondcoat, Triplex II APS top coat • PtAl bondcoat, LPPS(TF top coat • Porous APS reference • EB(PVD reference �3�����"$����� commercial. APS reference •Long term stability • furnace cycling test •Thermal shock resistance • burner rig tests Bondcoat: •Erosion resistance Thickness 150–200Im R a 12(14 Pm •Corrosion resistance ��

  12. Specimen procurement Burner Rig Thermography Corrosion Cyclix oxidation Erosion Mechanical response ~250 CMSX4 specimen with different geometries were needed ��

  13. Characterisation: Furnace Cycling Test 0���)�4 Test conditions: TBC thickness FT Cycling 150Im 1100 23hFT,1h RT 300Im(400Im 1050 23hFT,1h RT 500Im 1000 23hFT,1h RT Test results 3D APS Das war auch Triplex (unser)? ��%5���� LPPS(TF F4 APS Triplex II APS APS Ref. EB(PVD Ref. Hast Du da noch ein Foto ohne d ��

  14. Characterisation: Burner Rig Test 4��"$��2�����"�,������� Test conditions: CMSX4 pipes, 150x16mm Surface Temp. 1200°C Temp. Gradient >100°C 3$�����+�%�6 0+7 Cycle 210s hot 75 cooling (<100°C) Test Results 3D APS ������������� LPPS(TF 4��"$��2�0���)�4 F4 APS Triplex II APS APS Ref. EB(PVD Ref. ��

  15. Characterisation: Erosion Test conditions: 8�������$������ 0���)�4 Test temperature 700°C Impingement angles 30°, 90° Erosive Material Quartz Particle feeding rate 2g/min Impaction speed 25(40m/s Test Results 3D APS ��%5���� LPPS(TF F4 APS Triplex II APS 0���)�4 APS Ref. EB(PVD Ref. ��

  16. Characterisation: Corrosion Test conditions: Test temperature 900°C Test medium 75% NaSo4, 25% NaCl Test specimen massive Pins 4$����� CMAS(like test Test Results 3D APS LPPS(TF ����"������������' F4 APS Triplex II APS APS Ref. EB(PVD Ref. 4��"$�� 8/9�������%*��/����$��$�� ��

  17. Characterisation: Cyclic oxidation Test conditions: ��%5����*����':���� Dwell temperature 1050°C/‘ 1100°C(*) Cycle duration 2h Heating/cooling 15min 0���)�4�����'<����=� Test Results 3D APS LPPS(TF (*) F4 APS 83)�#/�;��'<����=� Triplex II APS APS Ref. EB(PVD Ref.(*) ��

  18. Characterisation: Summary & Ranking NLR Burner Rig VAC Burner Rig ALSTOM FCT AVIO corrosion Cesi Erosion 1,00 0,75 0,50 0,25 0,00 3D new FZJ LPPS(TF SM APS APS f&c FZJ APS ref TUC EB(PVD ref 3D APS LPPS TF F4 APS TriplexII APS APS ref. EB(PVD ref (~300Im) SM204BNS SNS HTU Main obejective: Properties of developed system superior to EB(PVD coatings, evaluated performace ��

  19. Thermal conductivity Measured via Laser Flash Technology 3 3D + seg APS 2.5 �'���5�����$������>�6�:�?7 2,5 F4 APS seg. 2.1 EB(PVD (ref) 2.0 2 Triplex 2 APS seg. 1.9 1,5 LPPS(TF 1.6 1 Porous APS (ref) 0.6 0,5 0 [ W/mK 0 200 400 600 800 1000 1200 ��������$���6=�7 ��

  20. Technology transfer ( Coating of real components �#������.$�������"��'��"��� �0���@�."��� ������" 0���)�4 ��"$���� 4� (�%'">���%������ ����"�,��� (�%'">���%������ ��

  21. Spraying transfer evaluation TBC thickness and porosity on real components 0��� �� ;�� �����+� +�� TBC thickness TBC thickness ��� �� TBC porosity ��� �� ��� � � ��:�8 �� �� ��:08 �� �� ��:�8 08 ��:08 �� �� �� �� 08 ��:08 ��:08 ��:�8 ��:�8 �� �8 �� 08 ��

  22. Further activities Sensor Coatings Repair technology Monitoring the process LPPS(TF coating Luminescence Laser YSZ Eu/Dy doped YSZ layer 3�������:�$.������ Defect EB(PVD coating � Modelling / FEM analysis of 3D �5� linear fit modifications Mechanical tests )�5� Intensity Ratio "��6���������>������7� • 4(point bending )�5� • Pulse exccitation )�5� )�5� )�5� )�5� )�5� � �� �� �� ;� ��� ��� ��� ��� �'��&�������������6 � � � � �7 YSZ Thickness ��

Recommend


More recommend