Topological pumps and topological quasicrystals PRL 109 , 106402 (2012); PRL 109 , 116404 (2012); PRL 110 , 076403 (2013); PRL 111 , 226401 (2013); PRB 91 , 064201 (2015); PRL 115 , 195303 (2015), PRA 93 , 043827 (2016), PRB 93 , 245113 (2016), Nat. Phys. 12 , 350 (2016); Nat. Phys. 12 , 624 (2016); Nature 553 , 55 (2018), Nature 553 , 59 (2018) arXiv:1802.04173, arXiv:1804.01871, arXiv:1805.05209 & arXiv:1805.10670
Outline Quantum Hall effect Topological pumps Photonic topological pump (1D) Atomic pumps Quasiperiodic systems Four-dimensional QHE
Quantum Hall effect • Landau gauge: 2 2 k 1 B p 2 y x m x a c I 2 2 m m a a c y E 2 ( ) ip y x p l p , ( , ) (...) n x y e y e y y x • Quantized Hall conductance 2 e E nk xy h n = 4 • n = 3 Chern number ω c n = 2 2 2 μ d p d p (p ,p ) n = 1 x y x y P 0 0 1 p y (p ,p ) Tr , P P P x y p p 2 i x y | | P n n n
Quantum Hall effect • Landau gauge: 2 2 k 1 B p 2 y x m x a c 2 2 m m a a c y 2 ( ) ip y x p l p , ( , ) (...) n x y e y e y y x bulk edge • Confining potential: E nk Chiral edge modes n = 4 n = 3 ω c • Chern number n = 2 μ Number of chiral edge modes n = 1 p y See Yasuhiro ’ s talk and references therein
Laughlin/Halperin ’ s argument B • Landau gauge: 2 2 k 1 p 2 y x m x a c 𝜖𝜚/𝜖𝑢 2 2 m m a a c 2 ( ) ip y x p l p , ( , ) (...) n x y e y e y y bulk • Chern number E nk Number of charges moved over a pump cycle μ p y
Laughlin/Halperin ’ s argument B • Landau gauge: 2 2 k 1 p 2 y x m x a c 𝜖𝜚/𝜖𝑢 2 2 m m a a c 2 ( ) ip y x p l p , ( , ) (...) n x y e y e y y bulk • Chern number E nk Number of charges moved over a pump cycle μ p y
Hofstadter model x y • Hamiltonian: b t y t x † 2 † i bx . . . . t c c h c t e c c h c x,y 1,y x,y x,y 1 x x y , x y † † . . 2 cos(2 ) t c c h c t bx k c c x, 1, x, x, k x k y y k k y y y y x, k y • Spectrum: b = 8/5 Harper, PPSL A 68 , 874 (1955) 2.5 4 Azbel, JETP 19 , 634 (1964) Hofstadter, PRB 14 , 2239 (1976) 3 ik y p E c e y E c q- 1 gaps b x,y x, k y 2 q k y 1 -2.5 2 π 0 k y b
Hofstadter model x y • Hamiltonian: b t y t x † † . . 2 cos(2 ) t c c h c t bx k c c x, 1, x, x, x k x k y y k k y y y y , x k y • Quantized Hall conductance: TKNN, PRL 49 , 405 (1982) 2 e b = 8/5 xy h 2.5 4 • Chern numbers: 3 2 2 d p d p (p ,p ) E x y x y μ 2 0 0 P 1 1 (p ,p ) Tr , P P P -2.5 2 π x y p p 0 k y 2 i x y
Hofstadter model x y • Hamiltonian: b t y t x † † . . 2 cos(2 ) t c c h c t bx k c c x, 1, x, x, x k x k y y k k y y y y , x k y • Quantized Hall conductance: TKNN, PRL 49 , 405 (1982) 2 e D. Osadchy and J. E. Avron, J. Math. Phys. 42 , 5665 (2001) b = 8/5 xy r h 2.5 2 4 • Chern numbers: 4 p 1 3 b 3 q E E 1 μ 2 2 r p qm r r P 2 1 1 q -2.5 | | 2 π 0 k y b r 2
Topological pump (1+1) • Harper model as a topological pump: D. J. Thouless, Phys. Rev. B 27 , 6083 (1983) † † ( ) . . 2 cos(2 ) H t c c h c t bx c c 1 x x x y x x x 2 / 7 x t x • Spectrum: x b = 8/5 2.5 Topological edge states of a 2D crystal E Boundary states of a 1D topological pump -2.5 2 π 0
Outline Quantum Hall effect Topological pumps Photonic topological pump (1D) Atomic pumps Quasiperiodic systems Four-dimensional QHE
Photonic waveguide array • A waveguide: i V z z • A photonic crystal: Lahini et al. , PRL 103, 013901 (2009) i t t V 1 1 1 z x x x x x x x z tight binding model propagation replaces time x
Photonic waveguide array • Diagonal modulation: z ( ) i t V 1 1 z x x x x x x • Off-diagonal modulation: i t t z 1 1 1 z x x x x x x
Experiment • Setup: input: single site output: distribution z • Evolution: overlap with eigenstates expansion according to eigenstates x • No chemical potential
Generalizations – Other 1D models • Off-diagonal Harper model: † ( ) 2 cos(2 ) . . H t t bx c c h c 1 x xy x x x n 2.5 x E y b t xy -2.5 t x ϕ 2 π 0 Phys. Rev. Lett. 109 , 106402 (2012)
Experiment 1: adiabatic pumping (1D+1) • density Pumping: 2.5 x density E x density -2.5 ϕ 2 π 0 x • Adiabatic pumping: ( ) H z z off-diagonal intensity z † ( ) 2 cos(2 ) . . H t t bx c c h c n 1 x xy x x x Phys. Rev. Lett. 109 , 106402 (2012)
Outline Quantum Hall effect Topological pumps Photonic topological pump (1D) Atomic pumps Quasiperiodic systems Four-dimensional QHE
Quasiperiodic models Systems with long-range order but no translation symmetry. • 1D Fibonacci chain: L L → LS LS S → L LSL LSLLS LSLLSLSL 1 1 • 2D Penrose tiling: 2 ( 2) ( 1) 1 d n n n 1 1
Long-range order vs. translations • Harper (or Aubry-André) model: † † ( ) . . 2 'cos(2 ) H t c c h c t bn c c n n 1 n n n • Long-range order vs. translations n 1..30 cos(2 ) bn n 101..130 The order determines the system up to translations of the origin (which have no effect on bulk properties). Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and OZ , Phys. Rev. Lett. 109 , 106402 (2012)
Long-range order vs. translations • Harper (or Aubry-André) model: † † ( ) . . 2 'cos(2 ) H t c c h c t bn c c n n 1 n n n • Translations vs. ϕ 1 2 b = p/q: (2 )mod 2 0, 2 , 2 , bn q q irrational b: (2 )mod2 [0,2 ] bn For the latter ϕ has no effect on bulk properties Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and OZ , Phys. Rev. Lett. 109 , 106402 (2012)
Long-range order vs. translations • Harper (or Aubry-André) model: † † ( ) . . 2 'cos(2 ) H t c c h c t bn c c n n 1 n n n • Translations vs. ϕ ϕ → ϕ + ε is equivalent to n → n + n ε † † ( ) ( ) ( ) T E l l T H T H T l l ( ) l E T l T l l independent of ϕ → flat bulk bands E 2 π ϕ 0 Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and OZ , Phys. Rev. Lett. 109 , 106402 (2012)
Long-range order vs. translations • Harper (or Aubry-André) model: † † ( ) . . 2 'cos(2 ) H t c c h c t bn c c n n 1 n n n • Projector P: † † ( ) ( ) ( ) ( ) P ~ H P T P T P T P T • Berry curvature 1 1 ( ( , ) , ) Tr Tr ( , ) ( ), ( ) P P P P P P 2 2 i i μ 1 Tr 1 Tr † ( ) ( ) ( ), ( ), ( ) ( ) c( 0, ) T P P P P P P T P 2 2 i i 2 π ϕ 0 Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and OZ , Phys. Rev. Lett. 109 , 106402 (2012)
Recommend
More recommend