topological objects contribute to thermodynamics of gluon
play

Topological objects contribute to thermodynamics of gluon plasma - PowerPoint PPT Presentation

Topological objects contribute to thermodynamics of gluon plasma Katsuya Ishiguro, Toru Sekido,Tsuneo Suzuki (Kanazawa, Japan) A. Nakamura (Hiroshima University, Japan), V.I. Zakharov in collaboration with M.N. Chernodub (ITEP, Moscow)


  1. Topological objects contribute to thermodynamics of gluon plasma Katsuya Ishiguro, Toru Sekido,Tsuneo Suzuki (Kanazawa, Japan) A. Nakamura (Hiroshima University, Japan), V.I. Zakharov in collaboration with M.N. Chernodub (ITEP, Moscow) • Magnetic component in Yang-Mills theory at T = 0. - Models of color confinement. - Strings and monopoles at T = 0 • Magnetic component at T > 0: - Condensate-liquid-gas transition? - Existence of real(?) strings/monopoles at T > T c ? - Strings/monopoles and equation of state (lattice) ◮ K.Ishiguro, A.Nakamura, T.Sekido, T.Suzuki, V.I.Zakharov, M.N.Ch., Proceedings of Science (LATTICE 2007) 174 [arXiv:0710.2547] ◮ V.I.Zakharov, M.N.Ch., Phys.Rev.Lett. 1 98 (2007) 082002

  2. Phase structure of pure gluons Nontrivial dynamics of QCD is determined by the gluon sector: [Talk by Frithjof Karsch ≈ 27 hours ago] Phase structure of SU ( N ) gluodynamics, N = 2 , 3 • T < T c : confinement of color • T > T c : deconfinement of color In the deconfinement phase: • T ∼ [ T c . . . 2 − 5 T c ] : plasma, strongly interacting gluons • higher T : predictions scale towards perturbation theory • T ≫ T c : perturbative electric gluons plus logarithmically decaying non-perturbative magnetic sector 2

  3. T c < T < 2 T c Properties of gluon plasma are unexpected: • Similar to ideal(!) liquid review in, e.g., [Shuryak, hep-ph/0608177] • Shear viscosity of plasma is low , η/s ≈ 0 . 1 . . . 0 . 4 * interpretation of RHIC experiment [Teaney, 03] η * simulations of quenched QCD 3 16 8 �� � � 3 s 24 8 [= SU(3) lattice gauge theory] Perturbative [A.Nakamura, S.Sakai, 05] Theory [H.Meyer, ’07] KSS bound�� 1 1.5 2 2.5 3 T T c 3

  4. T ≫ T c • Stefan-Boltzmann law seems to be reached at T → ∞ C SB = π 2 ε free = 3 P free = N d.f. C SB T 4 , 30 N d.f. = 2( N 2 c − 1) degrees of freedom numerical simulations [Karsch et al, NPB’96] [Bringoltz, Teper, PLB’05; Gliozzi, ’07] • Many features may be described by – perturbation theory – large- N c supersymmetric Yang–Mills theory a review can be found in [Klebanov, hep-ph/0509087] – quasiparticle models (work also around T ≈ T c ) [Rischke et al’ 90, Peshier et al’ 96; Levai, Heinz’ 98] 4

  5. T < T c (confinement phase) Widely discussed mechanisms of color confinement: • Dual superconductor picture [’t Hooft, Mandelstam, Nambu, ’74-’76] * Based on existence of special gluonic configurations, called “magnetic monopoles” * Monopoles are classified with respect to the Cartan sub- group [ U (1)] N − 1 of the SU ( N ) gauge group • Center vortex mechanism [Del Debbio, Faber, Greensite, Olejnik, ’97] * a realization of spaghetti (Copenhagen) vacuum * Center strings are classified with respect to the center Z N of the SU ( N ) gauge group 5

  6. Popular models of confinement of quarks • Condensation of magnetic monopoles Abelian Dominance [T.Suzuki, I. Yotsuyanagi ’00] Monopole Dominance [T.Suzuki, H.Shiba ’00] • Percolation of magnetic strings Center/Vortex Dominance [L. Del Debbio, M. Faber, J. Greensite, S. Olejnik ’97] • These approaches are related: – The percolation is related to the condensation (presence of the IR component in the density) – Monopoles are related to strings. numerical fact [Ambjorn, Giedt & Greensite ’00] required analytically [Zakharov ’05] compact gauge models [Feldmann, Ilgenfritz, Schiller & Ch. ’05] 6

  7. T < T c (Dual Superconductor) * condensation of monopoles → dual Meissner effect * dual Meissner effect → chromoelectric string formation * chromoelectric string = (dual) analogue of Abrikosov string * quarks are sources of chromoelectric flux → confinement Abrikosov string chromoelectric string monopole condensate in superconductor in QCD vacuum (numerical results) [Di Giacomo & Paffuti’97] monopole condensate from [Polikarpov, Veselov & Ch. ’97] 7

  8. T < T c (Dual Superconductor and QCD string) 4 2 0 -2 -4 -4 -2 0 2 4 electric field (theor.) monopole current (theor.) 2D-monopole curl (num.!) 0.008 0.6 0.03 E k 0.007 V-V 0 k θ curl E 0.5 V ab -V ab 0.025 0.006 0 0.4 0.005 0.02 0.3 0.004 V(R) 0.015 0.2 0.003 0.002 0.1 0.01 0.001 0 0.005 0 -0.1 0 0 1 2 3 4 5 6 7 -0.2 0 1 2 3 4 5 6 7 x 2 4 6 8 10 12 14 16 x R electric field, magn. current London (Ampere) equation quark-antiquark potential [Bali, Schlichter, Schilling ’98; Bali, Bornyakov, M¨ uller-Preussker, Schilling ’96] 8

  9. Center/Monopole mechanisms are linked • non-oriented half-flux of magnetic field • monopoles are at points at which the flux alternates • vortices are chains of monopoles + [Ambjorn, Giedt, Greensite, ’00] + - + - - • a similar string–monopole structure + + + appears also in SUSY models - [Hanany, Tong, ’03; Auzzi et al ’03] - and in non-SUSY theories + [Feldmann, Ilgenfritz, Schiller & Ch. ’05] - - [Gorsky, Shifman, Yung, ’04 ... ’07] + • required analytically [Zakharov ’05] 9

  10. Monopoles vs. vortices ◮ The vortices may organize the monopoles into dipole-like and chain- like structures, which are also present in compact Abelian models with doubly charged matter fields ◮ Examples of monopoles-vortex configurations: [results of numerical simulations are taken from Feldmann, Ilgenfritz, Schiller & M.Ch. ’05] ◮ Observation of monopoles in the vortex chains: monopole is a point defect, where the flux of the vortex alternates. 10

  11. Confinement ( T < T c ) and plasma ( T > T c ) ◮ The monopoles are condensed at T < T c ... and not condensed at T > T c ◮ The magnetic strings are percolating at T < T c ... and not percolating at T > T c ◮ What happens with topological defects at finite temperature T > 0? ◮ SUGGESTION: Degrees of freedom condensed at T = 0 form a light component of the thermal plasma at T > 0. ◮ The magnetic monopoles and the magnetic vortices become real (thermal) particles at T > 0 [Zakharov, M.N.Ch., ’07] [Liao and Shuryak, ’07] 11

  12. Use lattice simulations? ◮ Lattice simulations provide us with ensembles of magnetic defects. ◮ Which defect is real and which is virtual? t s=+1 s= 2 x - ◮ s : the wrapping number with respect to the compact T –direction. ◮ Properties of thermal particles are encoded in the wrapped trajec- tories, s � = 0, and the virtual particles are non-wrapped, s = 0. [Zakharov, M.N.Ch., ’07] 12

  13. Example of a free scalar particle ◮ How to get thermal component of the density d 3 p � ρ th ( T ) = (2 π ) 3 f T ( p ) from the trajectories of the particles? ◮ The propagator of the scalar particle is: P x,y e − S cl [ P x,y ] � G ( x − y ) ∝ is the sum over all trajectories P x,y connecting points x and y . ◮ The propagator in momentum space, � d 3 x e − i ( p , x ) G ( x , t = s/T ) . G s ( p ) = where s is the wrapping number of trajectories in the T –direction. 13

  14. Example of a free scalar particle ◮ Then the vacuum ( s = 0) part of propagator is divergent: G vac ≡ G 0 = 4 Λ 2 UV ω p ◮ ... while the ratio G wr ( p ) f T ( ω p ) = 1 G wr ≡ � G vac ( p ) , G s 2 s � =0 is finite as it gives the thermal distribution of the free particles 1 phys ) 1 / 2 ω p = ( p 2 + m 2 f T = , e ω p /T − 1 ◮ CONCLUSION: Wrapped trajectories in the Euclidean space correspond to real particles in Minkowski space. 14

  15. Density of thermal particles • The average number of wrappings s in a time slice of volume V 3 d is directly related to the density of real particles ρ th ( T ) = n wr = �| s |� V 3 d Wrapped monopole density 4 [V.I.Zakharov, M.N.Ch., ’07] Density of thermal monopoles vs. T 3 ρ 1/3 /T c [Bornyakov, Mitrjushkin, M¨ uller-Preussker ’92] [T.Suzuki, S.Ejiri, ’95] 2 [T.Ejiri, ’96] β =2.30 β =2.51 1 First reliable lattice calculation: β =2.74 [A.D’Alessandro, M.D’Elia, ’07] 0 2 4 6 8 T/T c 15

  16. Interpretation ◮ At T = T c : The condensed cluster → wrapped trajectories ◮ Wrapped trajectories correspond to real (thermal) particles: condensate + virtual condensate + thermal + virtual thermal + virtual ⇒ ⇒ ( T < 0) (0 < T < T c ) ( T > T c ) ◮ Analogy with superfluid Helium-4 [Zakharov & M.Ch’07] In He-4 at T = 1 K ≈ 0 . 5 T c only 7% of particles are in the condensate! The rest (93%) is thermal! 16

  17. Liquid state of monopoles at finite T • Monopole correlations � ρ ± ( x ) ρ ± ( y ) � • Calculation in lattice Yang-Mills: [A.D’Alessandro & M.D’Elia, ’07] • Liquid state interpretation: [Liao, Shuryak ’08] + [talk by Shuryak ≈ 40 minutes ago] ◮ A gas parameter for the monopole gas in Yang-Mills theory: ◮ The static monopoles contribute to spatial string tension σ sp . ◮ If the monopoles form a gas, then σ sp( T ) R sp = λ D ( T ) ρ ( T ) = 8 [theory] ◮ We find: R sp ≈ 8 at T � 2 . 5 T c [Ishiguro, Suzuki, M.Ch ’03] 17

  18. Thermodynamics • Free Energy ( T is temperature and V is spatial volume) F = − T log Z ( T, V ) • Pressure p = T ∂ log Z ( T, V ) = − F V = T V log Z ( T, V ) ∂ log V V • Energy density ε = T ∂ log Z ( T, V ) V ∂ log T • Entropy density s ( T ) = ε + p = ∂ p ( T ) T ∂T 18

Recommend


More recommend