ME 779 Control Systems Topic #38 Transfer function to state-space Reference textbook : Control Systems, Dhanesh N. Manik, Cengage Publishing, 2012 1
Transfer function to state-space Phase-variable and controller canonical forms m m 1 m 2 K s b s b s b s b ( ) Y s m 1 m 2 1 0 n n 1 n 2 U s ( ) s a s a s a s a n 1 n 2 1 0 2
Transfer function to state-space Phase-variable and controller canonical forms Z s ( ) K n n 1 n 2 U s ( ) s a s a s a s a n 1 n 2 1 0 Y s ( ) m m 1 m 2 s b s b s b s b m 1 m 2 1 0 Z s ( ) 3
Transfer function to state-space Phase-variable and controller canonical forms 1 2 n n n s a s a s a s a Z s ( ) KU s ( ) n 1 n 2 1 0 n n 1 n 2 d z d z d z dz ( ) a a a a z Ku t n 1 n 2 1 0 n n 1 n 2 dt dt dt dt 4
Transfer function to state-space Phase variable form dz x x x z 1 2 dt 1 dz 2 d z x x x 2 2 3 2 dt dt 3 2 d z d z x x x 3 4 3 dt 3 2 dt n 1 d z n 1 x x d z n 1 n n 1 dt x n n 1 dt n d z x n n dt 5
Transfer function to state-space Phase variable form n n 1 n 2 d z d z d z dz Ku t ( ) a a a a z n 1 n 2 1 0 n n 1 n 2 dt dt dt dt Ku t ( ) a x a x a x a x n 1 n n 2 n 1 1 2 0 1 6
Transfer function to state-space Phase variable form x x 1 2 x x 2 3 x x 3 4 x x n 1 n ( ) x Ku t a x a x a x a x n n 1 n n 2 n 1 1 2 0 1 7
Transfer function to state-space Phase variable form x 0 1 0 0 x 0 1 1 x 0 0 1 0 x 0 2 2 x 0 u t ( ) 3 x 0 0 0 1 n 1 x a a a a x K 0 1 2 1 n n n Upper companion matrix 8
Transfer function to state-space Phase variable form m m 1 m 2 d z d z d z dz y t ( ) b b b b z m 1 m 2 1 0 m m 1 m 2 dt dt dt dt y t ( ) x b x b x b x b x m 1 m 1 m m 2 m 1 1 2 0 1 9
Transfer function to state-space Phase variable form x 1 x 2 x 3 y t ( ) b b b b 1 0 0 x 0 1 2 m 1 m 1 x m x n 1 x n 10
Transfer function to state-space Phase variable form 11
Transfer function to state-space EXAMPLE Phase variable form Obtain the phase-variable representation of the following transfer function 2 20 s 2 s 5 Y s ( ) 4 3 2 U s ( ) s 3 s 5 s 6 s 7 12
Transfer function to state-space EXAMPLE Phase variable form x 0 1 0 0 x 0 1 1 x 0 0 1 0 x 0 2 2 u t ( ) x 0 0 0 1 x 0 3 3 x 7 6 5 3 x 20 4 4 x 1 x 2 y t ( ) [5 2 1 0] x 3 x 4 13
Transfer function to state-space Controller canonical form n 1 d z n x d z 1 x Ku t ( ) a x a x a x a x n 1 dt 1 n 1 1 n 2 2 1 n 1 0 n n dt n n 1 d z d z x x x 2 1 1 n 2 dt n dt 2 d z x x dz n 1 n 2 2 dt x n 1 dt dz x x n n 1 dt x z n 14
Transfer function to state-space Controller canonical form x x a a a a K 1 n 1 n 2 n 3 0 1 x 1 0 0 0 x 0 2 2 x 0 u t ( ) 3 x 0 0 1 0 0 n 1 x x 0 0 0 1 0 0 n n y t ( ) x b x b x b x b x n m m 1 n m 1 m 2 n m 2 1 n 1 0 n 15
Transfer function to state-space Controller canonical form x 1 x 2 x n m 1 x n m y t ( ) 0 0 0 1 b b b b m 1 m 2 1 0 x n m 1 x n m 2 x n 1 x n 16
Transfer function to state-space Controller canonical form 17
Transfer function to state-space EXAMPLE Controller canonical form Obtain the controller canonical representation of the following transfer function 2 20 s 2 s 5 Y s ( ) 4 3 2 U s ( ) s 3 s 5 s 6 s 7 18
Transfer function to state-space EXAMPLE Controller canonical form x x 3 5 6 7 20 1 1 x 1 0 0 0 x 0 2 2 u t ( ) x 0 1 0 0 x 0 3 3 x 0 0 1 0 x 0 4 4 x 1 x 2 y t ( ) [0 1 2 5] x 3 x 4 19
Transfer function to state-space Observer canonical form b b 1 b m 1 0 1 K n m n m 1 n 1 n Y s ( ) s s s s a a a a U s ( ) n 1 n 2 1 0 1 2 n 1 n s s s s 20
Transfer function to state-space Observer canonical form a a a a n 1 n 2 1 o ( ) 1 Y s 2 n 1 n s s s s 1 b b b m 1 1 0 KU s ( ) n m n m 1 n 1 n s s s s 21
Transfer function to state-space Observer canonical form 1 1 Y s ( ) b KU s ( ) a Y s ( ) b KU s ( ) a Y s ( ) 0 0 1 1 n n 1 s s a a 1 m 1 n 1 KU s ( ) a Y s ( ) Y s ( ) Y s ( ) m 1 n m n m s s s 22
Transfer function to state-space Observer canonical form 23
Transfer function to state-space Observer canonical form x a x x 1 n 1 1 2 x a x x 2 n 2 1 3 x a x x u t K ( ) n m m 1 n m 1 x a x x b u t K ( ) n 1 1 1 n 1 x a x b u t K ( ) n 0 1 0 24
Transfer function to state-space Observer canonical form 1 0 0 0 0 0 0 x a x 1 n 1 1 x a 0 1 0 0 0 0 x 0 2 n 2 2 0 0 0 0 0 0 x a 0 0 0 1 0 0 x 1 K u t ( ) n m m n m 0 0 0 0 0 x a 0 0 0 0 0 1 x b 1 1 1 1 n n x a 0 0 0 0 0 0 x b n 0 n 0 25
Transfer function to state-space Observer canonical form x 1 x 2 y t ( ) 1 0 0 0 x n 2 x n 1 x n 26
Recommend
More recommend