tighter bounds on the inefficiency ratio of stable
play

Tighter Bounds on the Inefficiency Ratio of Stable Equilibria in - PowerPoint PPT Presentation

Tighter Bounds on the Inefficiency Ratio of Stable Equilibria in Load Balancing Games Akaki Mamageishvili Paolo Penna ETH Zurich Outline Load Balancing Games Inefficiency Ratio of Stable Equilibria Tighter Bounds for IRSE (Our


  1. Tighter Bounds on the Inefficiency Ratio of Stable Equilibria in Load Balancing Games Akaki Mamageishvili Paolo Penna ETH Zurich

  2. Outline Load Balancing Games Inefficiency Ratio of Stable Equilibria Tighter Bounds for IRSE (Our Contribution)

  3. Load Balancing (Games)

  4. Load Balancing (Games)

  5. Load Balancing (Games)

  6. Load Balancing (Games) no improvement

  7. Load Balancing (Games) Nash Equilibrium OPT

  8. Quality of Equilibria Price of Anarchy: Let the players choose some equilibrium by themselves. How bad this can be? Nash

  9. Quality of Equilibria Price of Anarchy: Let the players choose some equilibrium by themselves. How bad this can be? PoA = worst Nash Opt Nash

  10. Quality of Equilibria Price of Anarchy: Let the players choose some equilibrium by themselves. How bad this can be? PoA = worst Nash Opt Nash PoS = best Nash Opt

  11. Load Balancing (Games) x 1 1 1 x x x 1

  12. Load Balancing (Games) x 1 1 1 x x x 1 1+ x → 4 2 x PoA = 3

  13. Load Balancing (Games) x 1 1 1 x x x 1 1+ x → 4 2 x PoA = 3 � � 1 In general: PoA = 2 1 − m +1 PoS = 1

  14. Inefficiency Ratio of Stable Equilibria PoA = worst Nash Opt Nash PoS = best Nash Opt

  15. Inefficiency Ratio of Stable Equilibria PoA = worst Nash Opt Nash Stable PoS = best Nash Opt

  16. Inefficiency Ratio of Stable Equilibria PoA = worst Nash Opt noisy best response Nash Stable min potential PoS = best Nash Opt

  17. Bounded Rationality

  18. Bounded Rationality Noisy best response prob ∝ e 10 / noise € 10 prob ∝ e 1 / noise € 1 Strategies with higher payoff chosen with higher probability

  19. Inefficiency Ratio of Stable Equilibria PoA = worst Nash Opt noisy best response Nash Stable min potential PoS = best Nash Opt

  20. Inefficiency Ratio of Stable Equilibria PoA = worst Nash Opt noisy best response Nash IRSE= worst Stable Nash Opt Stable min potential PoS = best Nash Opt (Asadpour, Saberi, 2009)

  21. Inefficiency Ratio of Stable Equilibria PoA = worst Nash Opt noisy best response Nash IRSE= worst Stable Nash Opt Stable min potential PoS = best Nash Opt L 2 -norm L ∞ -norm (Asadpour, Saberi, 2009)

  22. Inefficiency Ratio of Stable Equilibria PoA = worst Nash Opt noisy best response Nash IRSE= worst Stable Nash Opt Stable min potential PoS = best Nash Opt Minimize L 2 -norm ⇒ also good for L ∞ -norm (makespan)? (Alon, Azar, Woeginger, Yadid, 1997) (Asadpour, Saberi, 2009)

  23. Our Contribution 7 / 6 ≤ IRSE ≤ 4 / 3

  24. Our Contribution 7 / 6 ≤ IRSE ≤ 4 / 3 mininimize L 2 -norm automatically 4 / 3 -APX for L ∞ -norm

  25. Our Contribution 7 / 6 ≤ IRSE ≤ 4 / 3 mininimize L 2 -norm sometimes at least 7 / 6 -APX of L ∞ -norm

  26. Our Contribution 7 / 6 ≤ IRSE ≤ 4 / 3 Previous bunds: 19 / 18 ≤ IRSE ≤ 3 / 2

  27. Our Contribution 7 / 6 ≤ IRSE ≤ 4 / 3 Previous bunds: 19 / 18 ≤ IRSE ≤ 3 / 2 Asadpour - Saberi, WINE 2009 Alon - Azar - Woeginger - Yadid, SODA 1997

  28. Our Contribution 7 / 6 ≤ IRSE ≤ 4 / 3 mininimize L 2 -norm sometimes at least 7 / 6 -APX of L ∞ -norm

  29. Lower Bound (IRSE ≥ 7/6) 2 2 3 9 3 2 2

  30. Lower Bound (IRSE ≥ 7/6) 2 2 3 9 min potential 3 2 2

  31. Lower Bound (IRSE ≥ 7/6) 2 2 3 9 min potential 3 2 2

  32. Lower Bound (IRSE ≥ 7/6) 2 2 3 9 min potential 3 2 2 2 3 opt 2 9 3 2 2

  33. Lower Bound (IRSE ≥ 7/6) 3 4 3 5 min potential 14 4 5 2 3 3 5 4 opt 3 14 4 5 2 3

  34. Lower Bound (IRSE ≥ 7/6) 10 3 4 3 5 min potential 14 4 5 2 3 9 3 5 4 opt 3 14 4 5 2 3

  35. Lower Bound (IRSE ≥ 7/6) m − 1 3 4 3 5 min potential 14 4 5 2 3 3 5 4 opt 3 14 4 5 2 3

  36. Lower Bound (IRSE ≥ 7/6) m − 1 3 4 3 5 min potential 14 4 5 2 3 3 m − 3 3 5 4 opt 3 14 4 5 2 3

  37. Lower Bound (IRSE ≥ 7/6) m − 1 3 4 3 5 min potential 14 4 5 2 3 2 m − 3 3 m − 3 3 5 4 opt 3 14 4 5 2 3

  38. Lower Bound (IRSE ≥ 7/6) m − 1 3 4 3 5 min potential 14 5 m − 3 4 5 2 2 3 2 m − 3 3 m − 3 3 5 4 opt 3 14 4 5 2 3

  39. Lower Bound (IRSE ≥ 7/6) 7 m − 4 3 2 4 3 5 min potential 14 5 m − 3 4 5 2 2 3 2 m − 3 3 m − 3 3 5 4 opt 3 14 4 5 2 3

  40. Our Contribution 7 / 6 ≤ IRSE ≤ 4 / 3 mininimize L 2 -norm automatically 4 / 3 -APX for L ∞ -norm

  41. Upper Bound (IRSE ≤ 4/3) α > 1 / 3 opt =1 3 min potential L 1 ≥ L 2 L m ≥ · · · · · · ≥

  42. Upper Bound (IRSE ≤ 4/3) α > 1 / 3 smallest opt =1 3 min potential L 1 ≥ L 2 L m ≥ · · · · · · ≥

  43. Upper Bound (IRSE ≤ 4/3) α > 1 / 3 smallest opt =1 3 min potential L 1 ≥ L 2 L m ≥ · · · · · · ≥

  44. Upper Bound (IRSE ≤ 4/3) α > 1 / 3 smallest opt =1 3 β > 2 / 3 min potential L 1 ≥ L 2 L m ≥ · · · · · · ≥

  45. Upper Bound (IRSE ≤ 4/3) α > 1 / 3 smallest opt =1 3 β > 2 / 3 min potential L 1 ≥ L 2 L m ≥ · · · · · · ≥ α > 1 / 3 β > 2 / 3 OR α > 1 / 3 IN EVERY MACHINE

  46. Upper Bound (IRSE ≤ 4/3) α > 1 / 3 smallest opt =1 3 β > 2 / 3 min potential L 1 ≥ L 2 L m ≥ · · · · · · ≥ smallest α > 1 / 3 · · · β > 2 / 3 · · · α > 1 / 3

  47. Upper Bound (IRSE ≤ 4/3) α > 1 / 3 smallest opt =1 3 β > 2 / 3 min potential L 1 ≥ L 2 L m ≥ · · · · · · ≥ α > 1 / 3 β > 2 / 3 OR α > 1 / 3 IN EVERY MACHINE

  48. Upper Bound (IRSE ≤ 4/3) α > 1 / 3 smallest opt =1 3 β > 2 / 3 min potential L 1 ≥ L 2 L m ≥ · · · · · · ≥ x > x ′ y > y ′

  49. Upper Bound (IRSE ≤ 4/3) α > 1 / 3 smallest opt =1 3 β > 2 / 3 min potential L 1 ≥ L 2 L m ≥ · · · · · · ≥ x > x ′ 3 y > y ′

  50. Conclusions PoA ≈ 2 Nash Stable PoS = 1

  51. Conclusions PoA ≈ 2 Nash 4 / 3 IRSE Stable 7 / 6 PoS = 1

  52. Conclusions PoA ≈ 2 Nash ? 4 / 3 IRSE Stable 7 / 6 PoS = 1 Minimize L 2 -norm ⇒ also good for L ∞ -norm (makespan)?

  53. Conclusions PoA ≈ 2 Nash ? 4 / 3 IRSE Stable 7 / 6 PoS = 1 Global properties? 3

  54. Thank You!!

Recommend


More recommend