threshold expansion for higgs boson production at n3lo
play

Threshold Expansion for Higgs Boson Production at N3LO Bernhard - PowerPoint PPT Presentation

Threshold Expansion for Higgs Boson Production at N3LO Bernhard Mistlberger HP2 2014 in collaboration with Babis Anastasiou, Claude Duhr, Falko Dulat, Elisabetta Furlan, Franz Herzog and Thomas Gehrmann Higgs Production at N3LO Uncharted


  1. Threshold Expansion for Higgs Boson Production at N3LO Bernhard Mistlberger HP2 2014 in collaboration with Babis Anastasiou, Claude Duhr, Falko Dulat, Elisabetta Furlan, Franz Herzog and Thomas Gehrmann

  2. Higgs Production at N3LO Uncharted territory in QCD - perturbation theory • Inclusive Gluon - Fusion Higgs production at N3LO in the Large Top Mass Limit σ LO ( z ) + α S ˆ σ NLO ( z ) + α 2 σ NNLO ( z ) + α 3 σ N 3 LO ( z ) + O ( α 4 σ ( z ) = ˆ ˆ S ˆ S ˆ S ) ✓ ✓ ✓ First Calculation at this Order In QCD • We need a Feasibility study • We need Checks • We need Boundary Conditions for Integrals

  3. THRESHOLD EXPANSION p 1 z = m 2 H H ∼ 1 ˆ s p 2 • Expand around production threshold of the Higgs boson z ) = σ SV + σ (0) + ¯ z σ (1) + . . . σ (¯ ˆ z = 1 − z ¯ • Soft - Virtual term contains all 3-loop contributions + soft gluon radiation

  4. GG-Luminosity X Z dz σ = z L 12 ( τ /z )ˆ σ ( z ) F. Herzog

  5. Soft-Virtual Cross-section LO NLO NNLO NNNLO 14 TeV 100 80 60 Σ ê pb 40 20 0 0 1 2 3 4 Μ ê m H

  6. Soft-Virtual We truncate the series after first Term Soft-virtual term is ambiguous - Let‘s estimate  ˆ � σ ( z ) Z σ = dx 1 dx 2 f ( x 1 ) f ( x 2 ) [ zg ( z )] zg ( z ) threshold We can choose g ( z ) as long as z → 1 g ( z ) = 1 lim

  7. Soft-Virtual LO NLO 60 NNLO N3LO SV g=1/z N3LO SV g=1 N3LO SV g=z 50 2 N3LO SV g=z σ [pb] 40 30 20 0.5 1 1.5 2 µ /m H Let‘s Calculate more

  8. ? How to calculate

  9. Feynman Diagrams Combining real and virtual contributions calculated with Feynman diagrams is the only way for analytic calculation at N3LO @ N3LO: ~ 100 000 Interference Diagrams Automation is vital!

  10. THRESHOLD EXPANSION General Idea: p 1 Expand around z=1 H All final state p 2 radiation is soft Re-parametrize all out-going parton momenta p f → ¯ zp f z = 1 − z ¯

  11. THRESHOLD EXPANSION How to expand the Reverse Unitarity Phase-Space Cuts? Cutkosky’s rule to relate on-shell constraints to cut -propagators  1 � 1 1 � + ( p 2 ) → ∼ p 2 + i ✏ − p 2 − i ✏ p 2 c Allows to define derivatives and Expansion of cut-propagators � 2  �  1 �  1 1 − b ¯ z + . . . = a + ¯ zb a a c c c

  12. THRESHOLD EXPANSION � 2  �  1 �  1 1 − b ¯ z + . . . = a + ¯ zb a a c c c Expansion of (cut-)propagators yields soft (cut-)propagators Example: Higgs+2 parton Phase-Space Volume Z z 3 − 4 ✏ ⇥ z 2 ⇤ d Φ 3 = ¯ − ¯ + ¯ + . . . z Apply Integration-By-Part (IBP) Identities Relate Expanded Phase-Space Integrals To a Limited Set of ‘Master‘ Integrals

  13. THRESHOLD EXPANSION IBP Reduction yields = − 1 − ✏ = (1 − ✏ )(2 − ✏ )(3 − 2 ✏ ) 4(5 − 4 ✏ ) 2 Compare with full Result Z z 3 − 4 ✏ ⇥ z 2 ⇤ d Φ 3 = ¯ − ¯ + ¯ + . . . z Z z 3 − 4 ✏ d Φ 3 = ¯ 2 F 1 (1 − ✏ , 2 − 2 ✏ , 4 − 4 ✏ ; ¯ z )

  14. THRESHOLD EXPANSION Ready for Triple Real! Depends only on external momenta p f → ¯ zp f - Expand Integrand - Expand Measure ✓ But, What about loops?

  15. THRESHOLD EXPANSION d d k Z Loop-Integrals (2 π ) d • Loop momentum is not fixed • Follow the method of expansion by regions Soft Coll 1 Coll 2 Hard k → k || p 1 k → ¯ zk k → k || p 2 k • Parametrize and expand systematically in every region • Expand and Integrate Explicitly • Sum of regions yields the full result

  16. DOUBLE REAL VIRTUAL Hard and Soft Work As Expected Collinear is tricky! Soft Coll 1 Coll 2 Hard k → k || p 1 k → ¯ zk k → k || p 2 k k = α p 1 + β p 2 + k ⊥ k 2 zk 2 • Coll1: α → α , β → ¯ z β ⊥ , ⊥ → ¯ k 2 zk 2 α → ¯ z α , β → β ⊥ , • Coll2: ⊥ → ¯

  17. DOUBLE REAL VIRTUAL Double-real-Virtual k = α p 1 + β p 2 + k ⊥ p 1 p 4 • Coll2: k 2 zk 2 α → ¯ z α , β → β ⊥ , ⊥ → ¯ p 2 p 3 d d k 1 Z (2 π ) 2 ( k − p 2 − p 3 ) 2 ( k − p 3 ) 2 k 2 ( k + p 4 ) 2 ( k + p 1 + p 4 ) 2 ( k − p 2 − p 3 ) 2 → 1 1 1 + . . . k 2 − 2 kp 2 − 2 kp 1 s 23 + s 23 ¯ z s ij = 2 p i p j

  18. DOUBLE REAL VIRTUAL ( k − p 2 − p 3 ) 2 → 1 1 1 + . . . k 2 − 2 kp 2 − 2 kp 1 s 23 + s 23 ¯ z Can‘t perform usual IBP-Reduction for combined Phase-Space and Loop-Integral! 1-loop Reduction is possible! d d k All Collinear 1-Loop Integrals 1 Z Reduce to Bubbles! (2 π ) d k 2 ( k + p ) 2 First: Reduce 1-Loop Second: Reduce Phase-Space+1-Loop Only 4 Collinear Master Integrals

  19. THRESHOLD EXPANSION • We found a method to systematically expand Matrix-Elements and Master Integrals • We are able to apply IBP-Reduction AFTER performing the expansion • We see a drastic simplification in the size of the Matrix-Elements • We Observe a significant reduction of the Number of Master Integrals in the Expansion Double-Real Virtual Full Soft-Virtual ~350 11 Master Integrals Master Integrals

  20. Master Integrals 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 = 2 2 2 2 2 2 2 2 2 1 1 1 1 1 = = 2 2 2 2 1 2 1 1 1 1 2 1 = 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 2 2 p 1 p 1 p 1 1 1 1 2 1 1 1 1 = = q q 2 q 2 2 2 2 2 2 1 p 2 p 2 p 2

  21. EXPANSION AT NNLO NNLO 15 10 5 0 -5 % -10 -1 g=z -15 g=1 g=z -20 2 g=z -25 -1 0 1 2 3 4 5 6 7 8 9 10 Truncation Order Stay tuned

  22. Conclusion/Outlook • Systematic Expansion of Matrix Elements • First Results: Soft-Virtual Cross-section • Expansion as key ingredient for Full Kinematic Solution: boundary Condition • Expansion as Check for Full Kinematic Cross-section

  23. Thank you

Recommend


More recommend