Three Challenges in Distributed Optimization Keren Censor-Hillel Technion Workshop on Local Algorithms WOLA 2019 This project has received funding from the European Unionβs Horizon 2020 Research and Innovation Programme under grant agreement no. 755839 1
Optimization problems 2
Optimization problems Minimum vertex cover 3
Optimization problems Minimum vertex cover NP-hard (2-Ξ΅)-approximation is UG-hard (some algs. with a smaller-than-2 apx) 4
Distributed optimization Minimum vertex cover Complexity ? 5
Distributed graph algorithms #Nodes = n #Bandwidth = B (typically O(logn)) Knowledge of neighbors CONGEST #Rounds = ? 6
Distributed graph algorithms #Nodes = n #Bandwidth = B (typically O(logn)) Knowledge of neighbors Models: CONGEST #Rounds = ? LOCAL 7
Distributed graph algorithms #Nodes = n #Bandwidth = B (typically O(logn)) Knowledge of neighbors Models: CONGEST #Rounds = ? LOCAL 8
Distributed graph algorithms #Nodes = n #Bandwidth = B (typically O(logn)) Knowledge of neighbors Models: π π = π(π & ) CONGEST #Rounds = ? LOCAL π(πΈ) 9
Challenge 1: Distances 10
Challenge 1: Distances 11
Distances Exact minimum vertex cover: Ξ©(πΈ) rounds 12
Distances Exact minimum vertex cover: Ξ©(πΈ) rounds Approximations: LOCAL : (1 + π) -approximation in O(ππππ§ (log π /π)) rounds [Ghaffari, Kuhn, Maus β17] 13
Distances Exact minimum vertex cover: Ξ©(πΈ) rounds Approximations: LOCAL : (1 + π) -approximation in O(ππππ§ (log π /π)) rounds [Ghaffari, Kuhn, Maus β17] Ξ©(log Ξ/ log log Ξ) , Ξ©(β(log π / log log π)) rounds [Kuhn, Moscibroda, Wattenhofer β04] Ξ©(1/π) [Ben-Basat, Kawarabayashi, Schwartzman β18] 14
Optimal solutions for pieces of the graph LOCAL : (1 + π) -approximation in O(ππππ§ (log π /π)) rounds [Ghaffari, Kuhn, Maus β17] Come to Yannicβs talk tomorrow! 15
Optimal solutions for pieces of the graph LOCAL : (1 + π) -approximation in O(ππππ§ (log π /π)) rounds [Ghaffari, Kuhn, Maus β17] Come to Yannicβs talk tomorrow! 16
Optimal solutions for pieces of the graph LOCAL : (1 + π) -approximation in O(ππππ§ (log π /π)) rounds [Ghaffari, Kuhn, Maus β17] Come to Yannicβs talk tomorrow! 17
Optimal solutions for pieces of the graph LOCAL : (1 + π) -approximation in O(ππππ§ (log π /π)) rounds [Ghaffari, Kuhn, Maus β17] Come to Yannicβs talk tomorrow! 18
Optimal solutions for pieces of the graph LOCAL : (1 + π) -approximation in O(ππππ§ (log π /π)) rounds [Ghaffari, Kuhn, Maus β17] Come to Yannicβs talk tomorrow! 19
Challenge 2: Congestion 20
Challenge 2: Congestion 21
Congestion LOCAL : (1 + π) -approximation in O(ππππ§ (log π /π)) rounds [Ghaffari, Kuhn, Maus β17] Cannot collect dense neighborhoods quickly 22
CONGEST (2+Ξ΅)-approximation in π(log Ξ/ log log Ξ) rounds [Bar-Yehuda, C., Schwartzman β16] 2-approximation [Ben-Basat , Even, Kawarabayashi, Schwartzman β18] o(n 2 ), (2-Ξ΅)-approximation [Ben-Basat , Kawarabayashi, Schwartzman β18] Ξ©(log Ξ/ log log Ξ) , Ξ©(β(log π / log log π)) rounds for approximation [Kuhn, Moscibroda, Wattenhofer β04] 23
CONGEST (2+Ξ΅)-approximation in π(log Ξ/ log log Ξ) rounds [Bar-Yehuda, C., Schwartzman β16] 2-approximation [Ben-Basat , Even, Kawarabayashi, Schwartzman β18] o(n 2 ), (2-Ξ΅)-approximation [Ben-Basat , Kawarabayashi, Schwartzman β18] Ξ©(log Ξ/ log log Ξ) , Ξ©(β(log π / log log π)) rounds for approximation [Kuhn, Moscibroda, Wattenhofer β04] 24
CONGEST (2+Ξ΅)-approximation in π(log Ξ/ log log Ξ) rounds [Bar-Yehuda, C., Schwartzman β16] 2-approximation [Ben-Basat , Even, Kawarabayashi, Schwartzman β18] o(n 2 ), (2-Ξ΅)-approximation [Ben-Basat , Kawarabayashi, Schwartzman β18] Ξ©(log Ξ/ log log Ξ) , Ξ©(β(log π / log log π)) rounds for approximation [Kuhn, Moscibroda, Wattenhofer β04] Ξ©(π & /ππππ§ log π ) rounds for exact [C., Khoury, Paz β17] 25
Minimum vertex cover in CONGEST #rounds 9 Ξ©(π & ) [C., Khoury, Paz β17] [Ben-Basat, Even, Kawarabayashi, Schwartzman β18] [Kuhn, Moscibroda, [Bar-Yehuda, C., approximation Wattenhofer β04] Schwartzman β16] 1 (exact) 2 2+Ξ΅ 26
Minimum vertex cover in CONGEST #rounds 9 Ξ©(π & ) [C., Khoury, Paz β17] [Ben-Basat, Even, Kawarabayashi, Schwartzman β18] [Kuhn, Moscibroda, [Bar-Yehuda, C., approximation Wattenhofer β04] Schwartzman β16] 1 (exact) 2 2+Ξ΅ 27
Minimum vertex cover in CONGEST [Bachrach, C., Dory, Efron, #rounds Leitersdorf, Paz β19] 9 Ξ©(π & ) [C., Khoury, Paz β17] [Ben-Basat, Even, Kawarabayashi, Schwartzman β18] [Kuhn, Moscibroda, [Bar-Yehuda, C., approximation Wattenhofer β04] Schwartzman β16] 1 (exact) 1.5 2 2+Ξ΅ 28
Minimum vertex cover in CONGEST [Bachrach, C., Dory, Efron, #rounds Leitersdorf, Paz β19] 9 Ξ©(π & ) [C., Khoury, Paz β17] [Ben-Basat, Even, Kawarabayashi, Schwartzman β18] [Kuhn, Moscibroda, [Bar-Yehuda, C., approximation Wattenhofer β04] Schwartzman β16] 1 (exact) 1.5 2 2+Ξ΅ 29
Minimum vertex cover in CONGEST [Bachrach, C., Dory, Efron, #rounds Leitersdorf, Paz β19] 9 Ξ©(π & ) [C., Khoury, Paz β17] [Ben-Basat, Even, Kawarabayashi, Schwartzman β18] [Kuhn, Moscibroda, [Bar-Yehuda, C., approximation Wattenhofer β04] Schwartzman β16] 1 (exact) 1.5 2 2+Ξ΅ 30
2-Party communication [Yao β79] 31
History 32
History [Peleg, Rubinovich β97] [Lotker, Patt-Shamir, Peleg β01] [Elkin β04] [Das-Sarma, Holzer, Kor, Korman, Nanongkai, Pandurangan, Peleg, Wattenhofer β11] [Frischknecht, Holzer, Wattenhofer β12] [Ghaffari, Kuhn β13] [Drucker, Kuhn, Oshman β14] [Nanongkai, Das-Sarma, Pandurangan β14] [Das-Sarma, Molla, Pandurangan β15] [Holzer, Pinsker, β15] [Pandurangan, Peleg, Scquizzato β16] [Pandurangan, Robinson, Scquizzato β16] [C., Kavitha, Paz, Yehudayoff β16] [Fischer, Gonen, Kuhn, Oshman β18] [C., Dory β17] [C., Dory β18] 33
2-Party communication Alice: x=x 1 ,β¦,x k Bob: y=y 1 ,β¦,y k Goal: f(x,y) 34
2-Party communication Alice: x=x 1 ,β¦,x k Bob: y=y 1 ,β¦,y k Set-Disjointess: i: x i =y i =1 ? cost=Ξ©(k) [Kalyanasundaram and Schnitger β87] [Razborov β90] Goal: f(x,y) [Bar-Yossef et al. β04] 35
2-Party communication Γ¨ CONGEST Alice: x=x 1 ,β¦,x k Bob: y=y 1 ,β¦,y k Graph property P of G x,y determines f(x,y) 36
2-Party communication Γ¨ CONGEST Alice: x=x 1 ,β¦,x k Bob: y=y 1 ,β¦,y k Graph property P of G x,y determines f(x,y) Rounds Β cut Β B = Ξ©(cost(f(k))) 37
2-Party communication Γ¨ CONGEST Alice: x=x 1 ,β¦,x k Bob: y=y 1 ,β¦,y k Graph property P of G x,y determines f(x,y) Rounds Β cut Β B = Ξ©(cost(f( k ))) Rounds = Ξ©(cost(f( k ))/ cut Β B) 38
Warm-up: MVC, CONGEST Add edge iff π : input is 0 cut = : π = π/6 39
Warm-up: MVC, CONGEST Add edge iff π : input is 0 cut = : π = π/6 40
Warm-up: MVC, CONGEST Add edge iff π : input is 0 cut = : π = π/6 π & π = : 41
Warm-up: MVC, CONGEST MVC = 4 : π -2 inputs not disjoint π : 42
Warm-up: MVC, CONGEST MVC = 4 : π -2 inputs not disjoint π : MVC β₯ 4 : π -1 inputs disjoint 43
Warm-up: MVC, CONGEST MVC = 4 : π -2 inputs not disjoint π : MVC β₯ 4 : π -1 inputs disjoint Lower bound: Ξ©(π/π log π) = 9 Ξ©(π) rounds 44
Minimum vertex cover in CONGEST [Bachrach, C., Dory, Efron, #rounds Leitersdorf, Paz β19] 9 Ξ©(π & ) [C., Khoury, Paz β17] [Ben-Basat, Even, Kawarabayashi, Schwartzman β18] [Kuhn, Moscibroda, [Bar-Yehuda, C., approximation Wattenhofer β04] Schwartzman β16] 1 (exact) 1.5 2 2+Ξ΅ 45
Small cuts for MVC 0 1 0 1 [C., Khoury, Paz β17] Bit-gadget used for, e.g., diameter in [Abboud, C., Khoury β16] 46
Small cuts for MVC 0 1 0 1 [C., Khoury, Paz β17] MVC = 4( : π -1+log : π ) inputs not disjoint 47
Small cuts for MVC 0 1 0 1 [C., Khoury, Paz β17] k =Ξ(n 2 ), cut =Ξ(logn) Rounds = Ξ©(cost(f( k ))/ cut Β logn) = Ξ©(n 2 /log 2 n) 48
Minimum vertex cover in CONGEST [Bachrach, C., Dory, Efron, #rounds Leitersdorf, Paz β19] 9 Ξ©(π & ) [C., Khoury, Paz β17] [Ben-Basat, Even, Kawarabayashi, Schwartzman β18] [Kuhn, Moscibroda, [Bar-Yehuda, C., approximation Wattenhofer β04] Schwartzman β16] 1 (exact) 1.5 2 2+Ξ΅ 49
Why not for 1.5-approximation? β’ Alice/Bob compute OPT A and OPT B for their parts β’ The smaller is at most OPT/2 50
Why not for 1.5-approximation? β’ Alice/Bob compute OPT A and OPT B for their parts β’ The smaller is at most OPT/2 51
Why not for 1.5-approximation? β’ Alice/Bob compute OPT A and OPT B for their parts β’ The smaller is at most OPT/2 β’ The other side fills in the rest, at most OPT 52
Optimization problems 53
Recommend
More recommend