three challenges in distributed optimization
play

Three Challenges in Distributed Optimization Keren Censor-Hillel - PowerPoint PPT Presentation

Three Challenges in Distributed Optimization Keren Censor-Hillel Technion Workshop on Local Algorithms WOLA 2019 This project has received funding from the European Unions Horizon 2020 Research and Innovation Programme under grant agreement


  1. Three Challenges in Distributed Optimization Keren Censor-Hillel Technion Workshop on Local Algorithms WOLA 2019 This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement no. 755839 1

  2. Optimization problems 2

  3. Optimization problems Minimum vertex cover 3

  4. Optimization problems Minimum vertex cover NP-hard (2-Ξ΅)-approximation is UG-hard (some algs. with a smaller-than-2 apx) 4

  5. Distributed optimization Minimum vertex cover Complexity ? 5

  6. Distributed graph algorithms #Nodes = n #Bandwidth = B (typically O(logn)) Knowledge of neighbors CONGEST #Rounds = ? 6

  7. Distributed graph algorithms #Nodes = n #Bandwidth = B (typically O(logn)) Knowledge of neighbors Models: CONGEST #Rounds = ? LOCAL 7

  8. Distributed graph algorithms #Nodes = n #Bandwidth = B (typically O(logn)) Knowledge of neighbors Models: CONGEST #Rounds = ? LOCAL 8

  9. Distributed graph algorithms #Nodes = n #Bandwidth = B (typically O(logn)) Knowledge of neighbors Models: 𝑃 𝑛 = 𝑃(π‘œ & ) CONGEST #Rounds = ? LOCAL 𝑃(𝐸) 9

  10. Challenge 1: Distances 10

  11. Challenge 1: Distances 11

  12. Distances Exact minimum vertex cover: Ω(𝐸) rounds 12

  13. Distances Exact minimum vertex cover: Ξ©(𝐸) rounds Approximations: LOCAL : (1 + πœ—) -approximation in O(π‘žπ‘π‘šπ‘§ (log π‘œ /πœ—)) rounds [Ghaffari, Kuhn, Maus β€˜17] 13

  14. Distances Exact minimum vertex cover: Ξ©(𝐸) rounds Approximations: LOCAL : (1 + πœ—) -approximation in O(π‘žπ‘π‘šπ‘§ (log π‘œ /πœ—)) rounds [Ghaffari, Kuhn, Maus β€˜17] Ξ©(log Ξ”/ log log Ξ”) , Ξ©(√(log π‘œ / log log π‘œ)) rounds [Kuhn, Moscibroda, Wattenhofer β€˜04] Ξ©(1/πœ—) [Ben-Basat, Kawarabayashi, Schwartzman β€˜18] 14

  15. Optimal solutions for pieces of the graph LOCAL : (1 + πœ—) -approximation in O(π‘žπ‘π‘šπ‘§ (log π‘œ /πœ—)) rounds [Ghaffari, Kuhn, Maus β€˜17] Come to Yannic’s talk tomorrow! 15

  16. Optimal solutions for pieces of the graph LOCAL : (1 + πœ—) -approximation in O(π‘žπ‘π‘šπ‘§ (log π‘œ /πœ—)) rounds [Ghaffari, Kuhn, Maus β€˜17] Come to Yannic’s talk tomorrow! 16

  17. Optimal solutions for pieces of the graph LOCAL : (1 + πœ—) -approximation in O(π‘žπ‘π‘šπ‘§ (log π‘œ /πœ—)) rounds [Ghaffari, Kuhn, Maus β€˜17] Come to Yannic’s talk tomorrow! 17

  18. Optimal solutions for pieces of the graph LOCAL : (1 + πœ—) -approximation in O(π‘žπ‘π‘šπ‘§ (log π‘œ /πœ—)) rounds [Ghaffari, Kuhn, Maus β€˜17] Come to Yannic’s talk tomorrow! 18

  19. Optimal solutions for pieces of the graph LOCAL : (1 + πœ—) -approximation in O(π‘žπ‘π‘šπ‘§ (log π‘œ /πœ—)) rounds [Ghaffari, Kuhn, Maus β€˜17] Come to Yannic’s talk tomorrow! 19

  20. Challenge 2: Congestion 20

  21. Challenge 2: Congestion 21

  22. Congestion LOCAL : (1 + πœ—) -approximation in O(π‘žπ‘π‘šπ‘§ (log π‘œ /πœ—)) rounds [Ghaffari, Kuhn, Maus β€˜17] Cannot collect dense neighborhoods quickly 22

  23. CONGEST (2+Ξ΅)-approximation in 𝑃(log Ξ”/ log log Ξ”) rounds [Bar-Yehuda, C., Schwartzman β€˜16] 2-approximation [Ben-Basat , Even, Kawarabayashi, Schwartzman β€˜18] o(n 2 ), (2-Ξ΅)-approximation [Ben-Basat , Kawarabayashi, Schwartzman β€˜18] Ξ©(log Ξ”/ log log Ξ”) , Ξ©(√(log π‘œ / log log π‘œ)) rounds for approximation [Kuhn, Moscibroda, Wattenhofer β€˜04] 23

  24. CONGEST (2+Ξ΅)-approximation in 𝑃(log Ξ”/ log log Ξ”) rounds [Bar-Yehuda, C., Schwartzman β€˜16] 2-approximation [Ben-Basat , Even, Kawarabayashi, Schwartzman β€˜18] o(n 2 ), (2-Ξ΅)-approximation [Ben-Basat , Kawarabayashi, Schwartzman β€˜18] Ξ©(log Ξ”/ log log Ξ”) , Ξ©(√(log π‘œ / log log π‘œ)) rounds for approximation [Kuhn, Moscibroda, Wattenhofer β€˜04] 24

  25. CONGEST (2+Ξ΅)-approximation in 𝑃(log Ξ”/ log log Ξ”) rounds [Bar-Yehuda, C., Schwartzman β€˜16] 2-approximation [Ben-Basat , Even, Kawarabayashi, Schwartzman β€˜18] o(n 2 ), (2-Ξ΅)-approximation [Ben-Basat , Kawarabayashi, Schwartzman β€˜18] Ξ©(log Ξ”/ log log Ξ”) , Ξ©(√(log π‘œ / log log π‘œ)) rounds for approximation [Kuhn, Moscibroda, Wattenhofer β€˜04] Ξ©(π‘œ & /π‘žπ‘π‘šπ‘§ log π‘œ ) rounds for exact [C., Khoury, Paz β€˜17] 25

  26. Minimum vertex cover in CONGEST #rounds 9 Ξ©(π‘œ & ) [C., Khoury, Paz β€˜17] [Ben-Basat, Even, Kawarabayashi, Schwartzman β€˜18] [Kuhn, Moscibroda, [Bar-Yehuda, C., approximation Wattenhofer β€˜04] Schwartzman β€˜16] 1 (exact) 2 2+Ξ΅ 26

  27. Minimum vertex cover in CONGEST #rounds 9 Ξ©(π‘œ & ) [C., Khoury, Paz β€˜17] [Ben-Basat, Even, Kawarabayashi, Schwartzman β€˜18] [Kuhn, Moscibroda, [Bar-Yehuda, C., approximation Wattenhofer β€˜04] Schwartzman β€˜16] 1 (exact) 2 2+Ξ΅ 27

  28. Minimum vertex cover in CONGEST [Bachrach, C., Dory, Efron, #rounds Leitersdorf, Paz β€˜19] 9 Ξ©(π‘œ & ) [C., Khoury, Paz β€˜17] [Ben-Basat, Even, Kawarabayashi, Schwartzman β€˜18] [Kuhn, Moscibroda, [Bar-Yehuda, C., approximation Wattenhofer β€˜04] Schwartzman β€˜16] 1 (exact) 1.5 2 2+Ξ΅ 28

  29. Minimum vertex cover in CONGEST [Bachrach, C., Dory, Efron, #rounds Leitersdorf, Paz β€˜19] 9 Ξ©(π‘œ & ) [C., Khoury, Paz β€˜17] [Ben-Basat, Even, Kawarabayashi, Schwartzman β€˜18] [Kuhn, Moscibroda, [Bar-Yehuda, C., approximation Wattenhofer β€˜04] Schwartzman β€˜16] 1 (exact) 1.5 2 2+Ξ΅ 29

  30. Minimum vertex cover in CONGEST [Bachrach, C., Dory, Efron, #rounds Leitersdorf, Paz β€˜19] 9 Ξ©(π‘œ & ) [C., Khoury, Paz β€˜17] [Ben-Basat, Even, Kawarabayashi, Schwartzman β€˜18] [Kuhn, Moscibroda, [Bar-Yehuda, C., approximation Wattenhofer β€˜04] Schwartzman β€˜16] 1 (exact) 1.5 2 2+Ξ΅ 30

  31. 2-Party communication [Yao β€˜79] 31

  32. History 32

  33. History [Peleg, Rubinovich β€˜97] [Lotker, Patt-Shamir, Peleg ’01] [Elkin β€˜04] [Das-Sarma, Holzer, Kor, Korman, Nanongkai, Pandurangan, Peleg, Wattenhofer β€˜11] [Frischknecht, Holzer, Wattenhofer β€˜12] [Ghaffari, Kuhn ’13] [Drucker, Kuhn, Oshman β€˜14] [Nanongkai, Das-Sarma, Pandurangan β€˜14] [Das-Sarma, Molla, Pandurangan β€˜15] [Holzer, Pinsker, β€˜15] [Pandurangan, Peleg, Scquizzato β€˜16] [Pandurangan, Robinson, Scquizzato β€˜16] [C., Kavitha, Paz, Yehudayoff ’16] [Fischer, Gonen, Kuhn, Oshman β€˜18] [C., Dory β€˜17] [C., Dory ’18] 33

  34. 2-Party communication Alice: x=x 1 ,…,x k Bob: y=y 1 ,…,y k Goal: f(x,y) 34

  35. 2-Party communication Alice: x=x 1 ,…,x k Bob: y=y 1 ,…,y k Set-Disjointess: i: x i =y i =1 ? cost=Ξ©(k) [Kalyanasundaram and Schnitger β€˜87] [Razborov β€˜90] Goal: f(x,y) [Bar-Yossef et al. β€˜04] 35

  36. 2-Party communication Γ¨ CONGEST Alice: x=x 1 ,…,x k Bob: y=y 1 ,…,y k Graph property P of G x,y determines f(x,y) 36

  37. 2-Party communication Γ¨ CONGEST Alice: x=x 1 ,…,x k Bob: y=y 1 ,…,y k Graph property P of G x,y determines f(x,y) Rounds Ÿ cut Ÿ B = Ξ©(cost(f(k))) 37

  38. 2-Party communication Γ¨ CONGEST Alice: x=x 1 ,…,x k Bob: y=y 1 ,…,y k Graph property P of G x,y determines f(x,y) Rounds Ÿ cut Ÿ B = Ξ©(cost(f( k ))) Rounds = Ξ©(cost(f( k ))/ cut Ÿ B) 38

  39. Warm-up: MVC, CONGEST Add edge iff π‘œ : input is 0 cut = : π‘œ = π‘œ/6 39

  40. Warm-up: MVC, CONGEST Add edge iff π‘œ : input is 0 cut = : π‘œ = π‘œ/6 40

  41. Warm-up: MVC, CONGEST Add edge iff π‘œ : input is 0 cut = : π‘œ = π‘œ/6 π‘œ & 𝑙 = : 41

  42. Warm-up: MVC, CONGEST MVC = 4 : π‘œ -2 inputs not disjoint π‘œ : 42

  43. Warm-up: MVC, CONGEST MVC = 4 : π‘œ -2 inputs not disjoint π‘œ : MVC β‰₯ 4 : π‘œ -1 inputs disjoint 43

  44. Warm-up: MVC, CONGEST MVC = 4 : π‘œ -2 inputs not disjoint π‘œ : MVC β‰₯ 4 : π‘œ -1 inputs disjoint Lower bound: Ξ©(𝑙/π‘œ log π‘œ) = 9 Ξ©(π‘œ) rounds 44

  45. Minimum vertex cover in CONGEST [Bachrach, C., Dory, Efron, #rounds Leitersdorf, Paz β€˜19] 9 Ξ©(π‘œ & ) [C., Khoury, Paz β€˜17] [Ben-Basat, Even, Kawarabayashi, Schwartzman β€˜18] [Kuhn, Moscibroda, [Bar-Yehuda, C., approximation Wattenhofer β€˜04] Schwartzman β€˜16] 1 (exact) 1.5 2 2+Ξ΅ 45

  46. Small cuts for MVC 0 1 0 1 [C., Khoury, Paz β€˜17] Bit-gadget used for, e.g., diameter in [Abboud, C., Khoury β€˜16] 46

  47. Small cuts for MVC 0 1 0 1 [C., Khoury, Paz β€˜17] MVC = 4( : π‘œ -1+log : π‘œ ) inputs not disjoint 47

  48. Small cuts for MVC 0 1 0 1 [C., Khoury, Paz β€˜17] k =Θ(n 2 ), cut =Θ(logn) Rounds = Ξ©(cost(f( k ))/ cut Ÿ logn) = Ξ©(n 2 /log 2 n) 48

  49. Minimum vertex cover in CONGEST [Bachrach, C., Dory, Efron, #rounds Leitersdorf, Paz β€˜19] 9 Ξ©(π‘œ & ) [C., Khoury, Paz β€˜17] [Ben-Basat, Even, Kawarabayashi, Schwartzman β€˜18] [Kuhn, Moscibroda, [Bar-Yehuda, C., approximation Wattenhofer β€˜04] Schwartzman β€˜16] 1 (exact) 1.5 2 2+Ξ΅ 49

  50. Why not for 1.5-approximation? β€’ Alice/Bob compute OPT A and OPT B for their parts β€’ The smaller is at most OPT/2 50

  51. Why not for 1.5-approximation? β€’ Alice/Bob compute OPT A and OPT B for their parts β€’ The smaller is at most OPT/2 51

  52. Why not for 1.5-approximation? β€’ Alice/Bob compute OPT A and OPT B for their parts β€’ The smaller is at most OPT/2 β€’ The other side fills in the rest, at most OPT 52

  53. Optimization problems 53

Recommend


More recommend