theories of fission
play

Theories of Fission Topical Program: FRIB and the GW170817 Kilonova - PowerPoint PPT Presentation

Theories of Fission Topical Program: FRIB and the GW170817 Kilonova July, 19 th 2018 Nicolas Schunck LLNL-PRES-737743 LLNL-PRES-XXXXXX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National


  1. Theories of Fission Topical Program: FRIB and the GW170817 Kilonova July, 19 th 2018 Nicolas Schunck LLNL-PRES-737743 LLNL-PRES-XXXXXX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

  2. Characteristjcs of Fission Multj-scale Quantum Dynamical Process Entrance channel 2 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  3. Outline ● Introductjon ● Statjc Nuclear Propertjes Macroscopic-Microscopic Approach – – Nuclear Density Functjonal Theory ● Fission Dynamics Classical Dynamics (Stochastjc Langevin Equatjons) – – Quantum Dynamics (“Collectjve”) – Quantum Dynamics (“Non-collectjve”) ● Fission Spectrum ● Concluding Remarks 3 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  4. Macroscopic-microscopic Models (1/4) A phenomenological approach to nuclear structure • Start with deformed liquid drop(let) • Take into account nucleon degrees of freedom – Shell correctjon coming from the distributjon of single-partjcle levels – Pairing correctjon to mock up efgects of residual interactjons • Extensions to fjnite M. Bolsterli, E. O. Fiset, J. R. Nix, and J. L. Norton, PRC 5 , 1050 (1972); M. Brack, J. Damgaard, A. S. Jensen, H. C. Pauli, V. M. Strutinsky, and C. Y. Wong, angular momentum or RMP 44 , 320 (1972); J. Dudek, B. Herskind, W. Nazarewicz, Z. Zymanski, T.R. Werner, PRC 38 940 temperature (1988) 4 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  5. Macroscopic-microscopic Models (2/4) The total binding energy is a sum of several components • Total energy is writuen • Macroscopic liquid drop energy • Shell correctjon • Pairing correctjon • Shell and pairing correctjons require a set of single-partjcle energies e n : need to solve the Schrödinger equatjon J. Dudek, T. Werner, ADNDT 50, 179 (1992)J. Dudek, T. Werner, ADNDT 59, 1 (1995); N. Schunck, J. Dudek, B. Herskind, PRC 75 054304 (2007); P. Möller, A. Sierk, T. Ichigawa, H. sagawa, ADNDT 109 , 1 (2012) 5 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  6. Macroscopic-microscopic Models (3/4) Deformatjons are collectjve d.o.f, single partjcles intrinsic d.o.f ● (One-body) Schrödinger equatjon ● Nuclear mean-fjeld potentjal can be Nilsson, Woods-Saxon, Folded-Yukawa, etc. ● Solve BCS equatjon to compute occupatjon of s.p. states and extract pairing energy ● How does that apply to fjssion? Deformatjon of the nuclear shape drive the – fjssion process (=collectjve variables) Compute energy for difgerent deformatjons → – potentjal energy surfaces 6 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  7. Macroscopic-microscopic Models (4/4) Examples M. Kowal, et al, PRC 82 , 014303 (2010) P. Möller, et al, ADNDT 109 , 1 (2012) ● Global theory: many propertjes of all nuclei in the nuclear chart ● Fast: many calculatjons need only a laptop ● Inconsistent framework – Each theoretjcal piece (macro, micro, pairing, RPA, etc.) is treated independently of the others – Predictjve power has not really changed since the 1970ies 7 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  8. Nuclear Density Functjonal Theory (1/3) DFT is a remapping of the quantum many-body problem ● Quantum mechanics rules: Start with best estjmate of a realistjc nuclear Hamiltonian ● Replace the exact wave functjon by a simpler form, the reference state: a product state ● Replace exact Hamiltonian with efgectjve one such that ● Energy is a functjonal of density of P. Hohenberg and W. Kohn, PR 136 , B864 (1964); W. Kohn and L. J. Sham, PR 140 , A1133 (1965); J. Engel, PRC 75 , 014306 (2007); M Bender, P.H. partjcles and pairing tensor Heenen, P.-G. Reinhard, RMP 75 , 121 (2003); J. Messud, M. Bender, and E. Suraud, PRC 80 , 054314 (2009). ● Spontaneous symmetry breaking 8 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  9. Nuclear Density Functjonal Theory (2/3) The densitjes contain all degrees of freedom of the system ● Form of the energy functjonal chosen by physicists, ofuen guided by characteristjcs of nuclear forces (central force, spin-orbit, tensor, etc.): Skyrme, Gogny, etc. ● Variatjonal principle: determine the actual densitjes of the nucleus by requiring the energy is minimal with respect to their variatjons – Resultjng equatjon is called HFB equatjon (Hartree-Fock-Bogoliubov) – Solving the equatjon gives densitjes and characteristjcs of the reference state ● Any observable can be computed when we know the density ● One can compute potentjal energy surfaces by solving the HFB equatjon with constraints on the value of the collectjve variables 9 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  10. Nuclear Density Functjonal Theory (3/3) Examples J. Zhao, et al, PRC 91 , 024321 (2015) M. Mustonen, J. Engel, PRC 93 , 014304 (2016) S. Goriely, R. Capote, PRC 89 , 054318 (2014) Octupole deformation β 30 β-decay half-lives Quadrupole deformation β 20 ● Global theory: many propertjes of all nuclei in the nuclear chart ● Consistent framework: a single energy functjonal and quantum many-body methods ● Computatjonally expensive – Mass-table-scale calculatjons require supercomputers – Computjng potentjal energy surfaces is an art 10 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  11. Fission Observables Statjc approaches can be used to compute some fjssion observables M. Chadwick, et al, Nucl. Data Sheets 112 , 2887 S. Goriely, et al, PRL 111 , 242502 (2013) (2011) • Fission barriers inputs to compute fjssion cross-sectjons (=rates) • Reductjon multj-dimensional → 1-dimensional (arbitrary) • Assume parabolic shape (not justjfjed) • Neglect collectjve inertja • Statjstjcal theory gives (rather poor) estjmates of primary fjssion yields 11 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  12. Classical Dynamics (1/3) Fission is a stochastjc difgusion process in the collectjve space ● How to extract fjssion product yields from the knowledge of the po- tentjal energy surface? – Analogy with classical theory of difgusion – Collectjve variable = generalized coordinate – Defjne related momentum Fluctuatjon-dissipatjon theorem ● Langevin equatjons Frictjon tensor Random force 12 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  13. Classical Dynamics (2/3) Practjcal examples P. Nadtochy and G. Adeev, PRC 72 , 054608 (2005); P. N. Nadtochy, A. Kelić, and K.-H. Schmidt, PRC 75 , 064614 (2007); J. Randrup and P. Möller, PRL 106 , 132503 (2011); J. Randrup, P. Möller, and A. J. Sierk, PRC 84 , 034613 (2011); P. Möller, J. Randrup, and A. J. Sierk, PRC 85 , 024306 (2012); J. Randrup and P. Möller, PRC 88 , 064606 (2013); J. Sadhukhan, W. Nazarewicz and N. Schunck, PRC 93 , 011304 (2016), J. Sadhukhan, W. Nazarewicz and N. Schunck, PRC 96 , 061361 (2017). • Start beyond the saddle point (or close enough) • Build trajectories through the collectjve space by generatjng at each step the needed random variable • Enough trajectories (in the thousands) allow reconstructjng FPY 13 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  14. Classical Dynamics (3/3) Langevin classical dynamics is ideal tool for spontaneous fjssion J. Sadhukhan, W. Nazarewicz and N. Schunck, Phys. Rev. C 93 , 011304 (2016); J. Sadhukhan, W. Nazarewicz, C. Zhang and N. Schunck, Phys. Rev. C (R) 96 , 061301 (2017)  SF mass distributjons can be obtained by combining quantum tunneling tech- niques (half-lives) and classical dynamics Collectjve inertja plays critjcal role in determining tunneling probability (= τ SF ) – – Evolutjon from saddle to scission done with Langevin dynamics (=classical_ with microscopic inputs (energy, inertja) – Dissipatjon tensor stjll cause of signifjcant uncertainty 14 LLNL-PRES-746697 LLNL-PRES-xxxxxx

  15. Quantum Dynamics - TDGCM (1/3) Computjng the fmow of probability in the collectjve space • Ansatz for the tjme-dependent many-body wave functjon • Minimizatjon of the tjme-dependent quantum mechanical actjon + ansatz + Gaussian overlap approximatjon + some patjence • Interpretatjon – is probability amplitude to be at point q at tjme t – Related probability current – Flux of probability current through scission line gives yields J.-F. Berger, M. Girod, D. Gogny, CPC 63 , 365 (1991); H. Goutte, J.-F. Berger, P. Casoli, D. Gogny, PRC 71 024316 (2005); D. Regnier, N. Dubray, N. Schunck, and M. Verrière, PRC 93 , 054611 (2016); D. Regnier, M. Verriere, N. Dubray, and N. Schunck, CPC 200 , 350 (2016) 15 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  16. Quantum Dynamics - TDGCM (2/3) Example: TDGCM Evolutjon 16 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  17. Quantum Dynamics – TDGCM (3/3) Examples: Fission Product Yield Calculatjons 17 LLNL-PRES-737743 LLNL-PRES-xxxxxx

Recommend


More recommend