the weihrauch degree of ramsey s theorem for two colors
play

The Weihrauch degree of Ramseys Theorem for two colors Tahina - PowerPoint PPT Presentation

Introduction Variants Idempotency and Parallelization The Weihrauch degree of Ramseys Theorem for two colors Tahina Rakotoniaina Department of Mathematics & Applied Mathematics University of Cape Town, South Africa Faculty of Computer


  1. Introduction Variants Idempotency and Parallelization The Weihrauch degree of Ramsey’s Theorem for two colors Tahina Rakotoniaina Department of Mathematics & Applied Mathematics University of Cape Town, South Africa Faculty of Computer Science Universit¨ at der Bundeswehr M¨ unchen, Germany CCA, Nancy 2013 T. Rakotoniaina UniBw & UCT Weihrauch Degrees & Ramsey’s Theorem

  2. Introduction Variants Idempotency and Parallelization Puspose of the study Use Weihrauch degrees to classify mathematical theorems according to their computational content. Idea Regard a theorem as a map: Example ◮ A Π 2 theorem: “( ∀ x ∈ X )( ∃ y ∈ Y )( x , y ) ∈ A ” can be seen as a multivalued map f : x �→ { y : ( x , y ) ∈ A } . T. Rakotoniaina UniBw & UCT Weihrauch Degrees & Ramsey’s Theorem

  3. Introduction Variants Idempotency and Parallelization Contents ◮ Introduction to Weihrauch Degrees ◮ Variants of Ramsey’s Theorem ◮ Idempotency and Parallelization T. Rakotoniaina UniBw & UCT Weihrauch Degrees & Ramsey’s Theorem

  4. Introduction Variants Idempotency and Parallelization Contents ◮ Introduction to Weihrauch Degrees ◮ Variants of Ramsey’s Theorem ◮ Idempotency and Parallelization T. Rakotoniaina UniBw & UCT Weihrauch Degrees & Ramsey’s Theorem

  5. Introduction Variants Idempotency and Parallelization Represented Sets and Realizers ✲ ✲ g f ✲ Z ✲ V X U T. Rakotoniaina UniBw & UCT Weihrauch Degrees & Ramsey’s Theorem

  6. Introduction Variants Idempotency and Parallelization Represented Sets and Realizers N N N N N N N N δ X δ Y δ U δ V ❄ ❄ ❄ ❄ ✲ ✲ g f ✲ Z ✲ V X U T. Rakotoniaina UniBw & UCT Weihrauch Degrees & Ramsey’s Theorem

  7. Introduction Variants Idempotency and Parallelization Represented Sets and Realizers ✲ ✲ F G N N N N N N N N δ X δ Y δ U δ V ❄ ❄ ❄ ❄ ✲ ✲ g f ✲ Z ✲ V X U T. Rakotoniaina UniBw & UCT Weihrauch Degrees & Ramsey’s Theorem

  8. Introduction Variants Idempotency and Parallelization Represented Sets and Realizers ✲ ✲ F G N N N N N N N N δ X δ Y δ U δ V ❄ ❄ ❄ ❄ ✲ ✲ g f ✲ Z ✲ V X U ◮ ( X , δ X ) is a represented set if δ X : ⊆ N N → X is surjective ◮ F is a realizer of f if for all p ∈ dom ( f δ X ) we get δ Y F ( p ) ∈ f δ X ( p ) (noted by F ⊢ f ) If δ ( p ) = x then we say p is a name of the object x . T. Rakotoniaina UniBw & UCT Weihrauch Degrees & Ramsey’s Theorem

  9. Introduction Variants Idempotency and Parallelization Weihrauch Degree ✲ ✲ F G N N N N N N N N δ X δ Y δ U δ V ❄ ❄ ❄ ❄ ✲ g ✲ f ✲ Z ✲ V X U ◮ f is strongly Weihrauch reducible to g if there exist two computable functions H and K such that H ◦ G ◦ K ⊢ f for all G ⊢ g (noted be f ≤ sW g ) ◮ f is (weakly) Weihrauch reducible to g if there exist two computable functions H and K such that H � id , G ◦ K � ⊢ f for all G ⊢ g (noted be f ≤ W g ) T. Rakotoniaina UniBw & UCT Weihrauch Degrees & Ramsey’s Theorem

  10. Introduction Variants Idempotency and Parallelization Invariance Under Representations Definition If we have two representations δ 1 and δ 2 of a set X then δ 1 is said reducible to δ 2 , noted by δ 1 ≤ δ 2 , if there is a computable function Φ : ⊆ N N → N N such that δ 1 ( p ) = δ 2 Φ( p ) for all p ∈ dom( δ 1 ) Lemma Weihrauch degrees are invariant under equivalent representations. T. Rakotoniaina UniBw & UCT Weihrauch Degrees & Ramsey’s Theorem

  11. Introduction Variants Idempotency and Parallelization Tupling Functions and the Limit Map Definition Let ( p i ) i ∈ N be a sequence in Baire space. We define the following: ◮ � p i , p j � (2 n ) = p i ( n ) and � p i , p j � (2 n + 1) = p j ( n ) ◮ � p 0 , p 1 , ..., p n � = � p 0 , � p 1 , ..., p n �� ◮ � p 0 , p 1 , ... �� n , k � = p n ( k ) ◮ lim : ⊆ N N → N N ; lim � p 0 , p 1 , ... � ( n ) = lim i →∞ p i ( n ) T. Rakotoniaina UniBw & UCT Weihrauch Degrees & Ramsey’s Theorem

  12. Introduction Variants Idempotency and Parallelization Operators Let f : ⊆ ( X , δ X ) ⇒ ( Y , δ Y ) be a multivalued function. Then we define ◮ the parallelization � f : ⊆ ( X N , δ N X ) ⇒ ( Y N , δ N Y ) of f by � f ( x i ) i ∈ N := × ∞ i =0 f ( x i ) for all ( x i ) ∈ X N , where δ N : ⊆ N N → X N is defined by δ N � p 0 , p 1 , ... � := ( δ ( p i )) i ∈ N ◮ the jump f ′ : ⊆ ( X , δ ′ X ) ⇒ ( Y , δ Y ) of f by f ′ ( x ) = f ( x ) and δ ′ := δ ◦ lim ◮ for n ≥ 1; f n : ⊆ ( X n , δ n ) ⇒ ( Y n , δ n ) where δ n � p 0 , ..., p n � = ( δ ( p 0 ) , ..., δ ( p n )) T. Rakotoniaina UniBw & UCT Weihrauch Degrees & Ramsey’s Theorem

  13. Introduction Variants Idempotency and Parallelization Facts Let f and g be multivalued functions on represented spaces. Then ◮ f ≤ W � f ⇒ � ◮ f ≤ W g = f ≤ W � g f ≡ W � ◮ � � f ◮ f ≤ sW f ′ ⇒ f ′ ≤ sW g ′ ◮ f ≤ sW g = T. Rakotoniaina UniBw & UCT Weihrauch Degrees & Ramsey’s Theorem

  14. Introduction Variants Idempotency and Parallelization Invariance Principles Lemma Let f and g be multivalued functions on represented spaces such that f ≤ W g. Let n ∈ N . ◮ (Computable Invariance Principle) If g has a realizer that maps computable inputs to computable outputs, then f has a realizer that maps computable inputs to computable outputs. T. Rakotoniaina UniBw & UCT Weihrauch Degrees & Ramsey’s Theorem

  15. Introduction Variants Idempotency and Parallelization Contents ◮ Introduction to Weihrauch Degrees ◮ Variants of Ramsey’s Theorem ◮ Idempotency and Parallelization T. Rakotoniaina UniBw & UCT Weihrauch Degrees & Ramsey’s Theorem

  16. Introduction Variants Idempotency and Parallelization Ramsey Theory Definition Given l ≥ 1 and k ≥ 2 we define ◮ [ N ] l := { size l subsets of N } • [ N ] 1 = {{ 0 } , { 1 } , { 2 } , { 3 } , ... } • [ N ] 2 = {{ 0 , 1 } , { 0 , 2 } , { 1 , 2 } , { 0 , 3 } , { 1 , 3 } , { 2 , 3 } , { 0 , 4 } , ... } ◮ a coloring c : [ N ] l → { 0 , 1 , 2 , ..., k − 1 } Theorem (Ramsey’s Theorem) Given l , k ≥ 1 and a coloring c, there is an infinite subset M of N on which c is constant on [ M ] l Such sets M will be called homogeneous and we write c ( M ) = x if x is the constant value of c on M . T. Rakotoniaina UniBw & UCT Weihrauch Degrees & Ramsey’s Theorem

  17. Introduction Variants Idempotency and Parallelization Ramsey’s Theorem as a Map Definition We define the following: ◮ C l , k denotes the set of all c : [ N ] l → { 0 , 1 , 2 , ..., k − 1 } ◮ RT l , k : C l , k ⇒ 2 N ; c �→ { M : M is homogeneous for c } Sets are represented by their characteristic function and C l , k can be represented in the following way: δ C l , k ( p ) = c if for all { i 1 , ..., i l } ∈ [ N ] l we have c { i 1 , ..., i l } = x iff p � i 1 , ..., i l � = x T. Rakotoniaina UniBw & UCT Weihrauch Degrees & Ramsey’s Theorem

  18. Introduction Variants Idempotency and Parallelization Ramsey’s Theorem as a Map Definition We define the following: ◮ C l , k denotes the set of all c : [ N ] l → { 0 , 1 , 2 , ..., k − 1 } ◮ RT l , k : C l , k ⇒ 2 N ; c �→ { M : M is homogeneous for c } Sets are represented by their characteristic function and C l , k can be represented in the following way: δ C l , k ( p ) = c if for all { i 1 , ..., i l } ∈ [ N ] l we have c { i 1 , ..., i l } = x iff p � i 1 , ..., i l � = x The following maps are also very interesting ◮ MRT l , k : C l , k ⇒ 2 N ; c �→ { M : M is a maximal homogeneous set for c } ◮ CRT l , k : C l , k ⇒ N × 2 N ; c �→ { ( x , M ) : M is an homogeneous set with c ( M ) = x } T. Rakotoniaina UniBw & UCT Weihrauch Degrees & Ramsey’s Theorem

  19. Introduction Variants Idempotency and Parallelization Finite Intersection Lemma Given n ∈ N and c 1 , ..., c n in C l , k , we get ∩ n i =1 RT l , k ( c i ) � = ∅ . Proof idea. We construct a map t : ( C l , k ) n → C l , k n ; ( c 1 , ..., c n ) �→ c such that RT l , k n ( c ) = ∩ n i =1 RT l , k ( c i ). And we apply Ramsey’s Theorem itself. Definition ∩ n RT l , k : ( C l , k ) n ⇒ 2 N ; ( c 1 , ..., c n ) �→ { M : M is homogeneous for each c i } T. Rakotoniaina UniBw & UCT Weihrauch Degrees & Ramsey’s Theorem

  20. Introduction Variants Idempotency and Parallelization Bolzano-Weierstrass and Ramsey Theorems Definition We define the Bolzano-Weierstrass map for { 0 , 1 } as the following: BWT 2 : { 0 , 1 } N ⇒ { 0 , 1 } ; p �→ { x : ( ∃ ∞ n ) p ( n ) = x } Lemma ◮ BWT 2 ≡ W RT 1 , 2 ≡ W CRT 1 , 2 ≡ W MRT 1 , 2 ◮ BWT 2 | sW RT 1 , 2 ◮ BWT 2 < sW CRT 1 , 2 and RT 1 , 2 < sW CRT 1 , 2 ◮ CRT 1 , 2 < sW MRT 1 , 2 ◮ MRT 1 , 2 ≡ sW id × RT 1 , 2 T. Rakotoniaina UniBw & UCT Weihrauch Degrees & Ramsey’s Theorem

  21. Introduction Variants Idempotency and Parallelization Strong Reducibility MRT 1 , 2 ≡ id × RT 1 , 2 ❄ CRT 1 , 2 ✡ ❏ ✡ ❏ ✢ ✡ ❏ ❫ BWT 2 RT 1 , 2 T. Rakotoniaina UniBw & UCT Weihrauch Degrees & Ramsey’s Theorem

Recommend


More recommend