the value of information in selfish routing
play

The Value of Information in Selfish Routing Simon Scherrer, Adrian - PowerPoint PPT Presentation

The Value of Information in Selfish Routing Simon Scherrer, Adrian Perrig, Stefan Schmid 27th International Colloquium on Structural Information and Communication Complexity (SIROCCO) June 29 - July 1, 2020 The Value of Information in Selfish


  1. The Value of Information in Selfish Routing Simon Scherrer, Adrian Perrig, Stefan Schmid 27th International Colloquium on Structural Information and Communication Complexity (SIROCCO) June 29 - July 1, 2020 The Value of Information in Selfish Routing | | 1 Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

  2. Network-based path selection A 2 A 4 p e 1 A 1 A 3 A 5 A 7 e 2 A 6 Suboptimal No robustness paths to failures The Value of Information in Selfish Routing | | 2 Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

  3. Source-based path selection A 2 A 4 p 1 p 2 e 1 A 1 A 3 A 5 A 7 e 2 p 3 A 6 Suboptimal Best path No robustness Fast rerouting paths for use case to failures on failure The Value of Information in Selfish Routing | | 3 Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

  4. Network-based path selection: Network operator view The Value of Information in Selfish Routing | | 4 Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

  5. Source-based path selection: Network operator view The Value of Information in Selfish Routing | | 5 Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

  6. Goals of our work Revisit selfish-routing concepts to investigate two issues arising in emerging path-aware Internet architectures: ▪ Impact of information: What network state information should be shared with end-hosts? ▪ Impact on network operators: What is the impact of selfish routing on the cost of network operators? The Value of Information in Selfish Routing | | 6 Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

  7. Price of Anarchy: Three components C Social cost function C(F eq ) PoA = F opt Social optimum C(F opt ) F eq Equilibrium The Value of Information in Selfish Routing | | 7 Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

  8. Adapted Wardrop model of source-based path selection e 2 e 3 d = (d 1,2 , d 3,4 ) = (1, 1) A 2 F = (F α , F γβ , F β , F αγ ) α β f = (f α , f β , f γ ) γ A 1 A 3 c α (f α ) = 1 e 1 e 4 C π ( F ) = Σ ℓ ∈ π c ℓ 2 c β (f β ) = f β c γ (f γ ) = f γ The Value of Information in Selfish Routing | | 8 Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

  9. Total cost functions and social optima End-host cost function: C * = Σ end-hosts Σ paths flow on path · path cost = Σ π ∈ Π F π · C π ( F ) = Σ ℓ ∈ L f ℓ · c ℓ (f ℓ ) (classic) F * = argmin F C * ( F ) End-host optimum: Network-operator cost function: C # = Σ links link cost = Σ ℓ c ℓ (f ℓ ) F # = argmin F C # ( F ) Network-operator optimum: The Value of Information in Selfish Routing | | 9 Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

  10. Characterizing social optima: Suboptimal path flow pattern C π ( F ) C α (F α ) d = (d 1,2 ) = (1) C β (F β ) F = (F α , F β ) Δ C α + C( F ) = C α (F α ) + C β (F β ) δ C α ∃ δ . | Δ C α + | < | Δ C β - | δ ⇒ C can be reduced Δ C β - C β 1 F π The Value of Information in Selfish Routing | | 10 Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

  11. Characterizing social optima: Optimal path flow pattern C π ( F ) C α (F α ) ∀ δ . | Δ C α + | > | Δ C β - | C β (F β ) ⇒ C cannot be reduced Δ C α + m = ∂C/∂F α ⇒ C is optimal δ C α ∂C/∂F α = ∂C/∂F β ⇒ ∀ δ . | Δ C α + | > | Δ C β - | m = ∂C/∂F β ⇒ C is optimal δ Δ C β - C β 1 F π The Value of Information in Selfish Routing | | 11 Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

  12. Socially optimal marginal costs ∂C( F )/∂F π is the marginal cost of path π given path-flow pattern F A path-flow pattern F is optimal w.r.t. a cost function C ∈ {C * ,C # } if for every origin-destination pair : F α , …, F ρ > 0 F σ , …, F ω = 0 ∂C( F ) ∂C( F ) ∂C( F ) ∂C( F ) = … = ≤ ≤ … ≤ ∂F σ ∂F ω ∂F α ∂F ρ The Value of Information in Selfish Routing | 12 | Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

  13. Social optimum: Comparison (Example) α 2 C α (F α ) = F α F # = (F α , F β , F γ ) = (½, 0, ½) β C β (F β ) = 2 F β A 1 A 2 e 1 e 2 F * = (F α , F β , F γ ) = (⅔, ⅓, 0) + 2 γ C γ (F γ ) = F γ Different optima! Network operators prefer usage of links with little variable cost (here: γ ) The Value of Information in Selfish Routing | | 13 Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

  14. Price of Anarchy: Where are we? C Total cost function C(F eq ) PoA = F opt Social optimum C(F opt ) F eq Equilibrium The Value of Information in Selfish Routing | | 14 Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

  15. Equilibrium with latency-only information (LI equilibrium) α C α = 2 d = (d 1,2 ) = (1) A 1 A 2 F = (F α , F β ) e 1 e 2 = (1, 0) β C β = 2 F = (1,0) is an LI equilibrium ⇒ C α = C β The Value of Information in Selfish Routing | | 15 Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

  16. Characterizing the LI equilibrium A path flow pattern F is an LI equilibrium if for every origin-destination pair : F α , …, F ρ > 0 F σ , …, F ω = 0 C α ( F ) = … = C ρ ( F ) ≤ C σ ( F ) ≤ … ≤ C ω ( F ) The Value of Information in Selfish Routing | | 16 Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

  17. Equilibrium with perfect information (PI equilibrium) α : c α (f α ) = f α d (1) = (d 1,2 ) = (1) f α = F α + 1 A 1 A 2 F (1) = (F α , F β ) e 1 e 2 f β = F β + 1 β : c β (f β ) = 2 Minimize selfish cost C (1) ( F (1) ) = F α ·(F α + 1) + F β ·2 ⇒ (F α , F β ) = (⅔, ⅓) is a PI equilibrium The Value of Information in Selfish Routing | | 17 Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

  18. Characterizing the PI equilibrium A path flow pattern F is a PI equilibrium if for every origin-destination pair of any end-host e: F α , …, F ρ > 0 F σ , …, F ω = 0 ∂C (e) ( F ) ∂C (e) ( F ) ∂C (e) ( F ) ∂C (e) ( F ) = … = ≤ ≤ … ≤ ∂F α ∂F ω ∂F σ ∂F ρ The Value of Information in Selfish Routing | | 18 Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

  19. Capturing the value of information Information Latency-only Perfect assumption Information (LI) Information (PI) Equilibrium F 0 F + C( F 0 ) C( F + ) Price of Anarchy PoA 0 = a PoA + = a C( F opt ) C( F opt ) Δ = Value of Information ( VoI ) The Value of Information in Selfish Routing | | 19 Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

  20. The benefits of information VoI > 0 The Value of Information in Selfish Routing | | 20 Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

  21. The benefits of information: Network of parallel links (cf. Roughgarden 2003) Σ k d k,T = 1 e 1 α c α (f α ) = 1 A 1 A 2 ... F = (F 1 α , F 1 β , ... e T β c β (f β ) = f β F K α , F K β ,) e K EH Opt: F * s.t. f β = 1/2 LI Eq: F 0 s.t. f β = 1 NO Opt: F # s.t. f β = 0 PI Eq: F + s.t. f β = K/(K+1) The Value of Information in Selfish Routing | | 21 Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

  22. The benefits of information: Network of parallel links LI equilibrium PI equilibrium PoA *+ = PoA *0 = End-host (K 2 + K + 1)/(K 2 + 2K + 1) · 4/3 4/3 perspective ≤ PoA *0 Network- PoA #+ = PoA #0 = operator 1+ K/(K + 1) 2 ≤ 2 = PoA #0 perspective The Value of Information in Selfish Routing | | 22 Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

  23. The benefits of information: Network of parallel links LI equilibrium PI equilibrium PI equilibrium PoA *+ = PoA *0 = End-host cheaper than (K 2 + K + 1)/(K 2 + 2K + 1) · 4/3 4/3 perspective ≤ PoA *0 LI equilibrium Network PoA #+ = PoA #0 = VoI > 0 operator 1+ K/(K + 1) 2 ≤ 2 = PoA #0 perspective The Value of Information in Selfish Routing | | 23 Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

  24. The drawbacks of information VoI < 0 The Value of Information in Selfish Routing | | 24 Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

  25. The drawbacks of information: Ladder network 2 h 1 c h1 (f h1 ) = f h1 A 11 A 12 e 11 e 12 d = (d 11,12 , d 21,22 ) c v1 (f v1 ) = f v1 = (1, 1) v 2 v 1 F → = (1, 0, 1, 0) c v2 (f v2 ) = f v2 A 21 A 22 e 21 e 22 h 2 c h2 (f h2 ) = f h2 2 Direct-only F → is universally optimal: F → = F * = F # The Value of Information in Selfish Routing | | 25 Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

  26. The drawbacks of information: Ladder network 2 h 1 c h1 (f h1 ) = f h1 F → = (1, 0, 1, 0) A 11 A 12 e 11 e 12 c v1 (f v1 ) = f v1 v 2 v 1 c v2 (f v2 ) = f v2 A 21 A 22 e 21 e 22 h 2 c h2 (f h2 ) = f h2 2 C 1H ( F → ) = 1 = C 1V ( F → ) ⇒ F → = F 0 (LI equilibrium is optimal) The Value of Information in Selfish Routing | | 26 Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

  27. The drawbacks of information: Ladder network 2 h 1 c h1 (f h1 ) = f h1 F → = (1, 0, 1, 0) A 11 A 12 e 11 e 12 F ~ = (0.9, 0.1, 1, 0) c v1 (f v1 ) = f v1 v 2 v 1 c v2 (f v2 ) = f v2 A 21 A 22 e 21 e 22 h 2 c h2 (f h2 ) = f h2 2 C (1) ( F → ) = 1 > C (1) ( F ~ ) = 0.87 ⇒ F → ≠ F + (PI equilibrium is suboptimal) The Value of Information in Selfish Routing | | 27 Simon Scherrer, Adrian Perrig, Stefan Schmid @ SIROCCO 2020

Recommend


More recommend