the primordial lithium problem can we avoid new physics
play

The Primordial Lithium Problem Can We Avoid New Physics ? Nachiketa - PowerPoint PPT Presentation

The Primordial Lithium Problem Can We Avoid New Physics ? Nachiketa Chakraborty, Prof. Brian D. Fields Prof. Keith A. Olive New Perspectives 2011 Whats the problem ? Light elemental abundances constrain Big Bang cosmology (Wagoner, Fowler


  1. Let’s try resonances • A + B --> C + D vs A + B --> X* --> C + D

  2. Let’s try resonances

  3. Let’s try resonances http:// www.tunl.duke.edu/ nucldata/figures/09figs/ 09_05_2004.gif

  4. Resonant Cross-section Strength 1.0 • In nuclear physics, 0.8 0.6 Width Γ 1 Γ 2 0.4 σ ∝ ( E − E R ) 2 + ( Γ tot / 2) 2 0.2 � 2 � 1 1 2 3 4 • (Breit-Wigner single level formula) Resonance energy • Rate of reaction ~ n A n B < σ v >

  5. Resonant Cross-section Strength 1.0 • In nuclear physics, 0.8 0.6 Width Γ 1 Γ 2 0.4 σ ∝ ( E − E R ) 2 + ( Γ tot / 2) 2 0.2 � 2 � 1 1 2 3 4 • (Breit-Wigner single level formula) Resonance energy T Not position of the energy level in the compound • Rate of reaction ~ n A n B < σ v > nucleus, but extra energy required by reactants to get there over Q-value

  6. Resonant Cross-section Strength 1.0 • In nuclear physics, 0.8 0.6 Width Cross-Section Γ 1 Γ 2 0.4 σ ∝ ( E − E R ) 2 + ( Γ tot / 2) 2 0.2 � 2 � 1 1 2 3 4 Energy • (Breit-Wigner single level formula) Resonance energy T Not position of the energy level in the compound • Rate of reaction ~ n A n B < σ v > nucleus, but extra energy required by reactants to get there over Q-value

  7. Equilibrium Rates • The rate eqn for abundances dY i Y i = n i dt = n b Σ ( Y k Y l � σ v � kl − Y i Y j � σ v � ij ) n H • At equilibrium, production = destruction Σ Y k Y l � σ v � kl = Σ Y i Y j � σ v � ij • New rates must compare with old important rates Σ Y k Y l � σ v � kl ( Y i ) old Y i = = Y p � � v � ip ) new ( Σ Y j � σ v � ij ) old + ( Y p � σ v � ip ) new 1 + ( Σ Y j � � v � ij ) old

  8. Fred Hoyle set a famous precedent

  9. Fred Hoyle set a famous precedent 4He + 4He -> 8Be 8Be + 4He -> 12C

  10. Fred Hoyle set a famous precedent 4He + 4He -> 8Be 8Be + 4He -> 12C

  11. Fred Hoyle set a famous precedent There it is 4He + 4He -> 8Be 8Be + 4He -> 12C

  12. Cyburt and Pospelov • Identified a narrow level in 9 B at 16.7 MeV • Width of energy level unknown • Enhancement of reaction 7 Be(d, γ ) 9 B and 7 Be(d,p) αα (E R , Γ d ) ~ (170-220,10-40) • keV , 7 Li/H = (2.5 - 6) x 10 -10 • Needs experimental verification

  13. Cyburt and Pospelov • Identified a narrow level in 9 B at 16.7 MeV • Width of energy level unknown • Enhancement of reaction 7 Be(d, γ ) 9 B and 7 Be(d,p) αα (E R , Γ d ) ~ (170-220,10-40) • keV , 7 Li/H = (2.5 - 6) x 10 -10 • Needs experimental verification

  14. Cyburt and Pospelov • Identified a narrow level in 9 B at 16.7 MeV • Width of energy level unknown • Enhancement of reaction 7 Be(d, γ ) 9 B and 7 Be(d,p) αα (E R , Γ d ) ~ (170-220,10-40) • keV , 7 Li/H = (2.5 - 6) x 10 -10 • Needs experimental verification

  15. Cyburt and Pospelov • Identified a narrow level in 9 B at 16.7 MeV • Width of energy level unknown • Enhancement of reaction 7 Be(d, γ ) 9 B and 7 Be(d,p) αα (E R , Γ d ) ~ (170-220,10-40) • keV , 7 Li/H = (2.5 - 6) x 10 -10 • Needs experimental verification

  16. Cyburt and Pospelov • Identified a narrow level in 9 B at 16.7 MeV • Width of energy level unknown • Enhancement of reaction 7 Be(d, γ ) 9 B and 7 Be(d,p) αα (E R , Γ d ) ~ (170-220,10-40) • keV , 7 Li/H = (2.5 - 6) x 10 -10 • Needs experimental verification

  17. Cyburt and Pospelov • Identified a narrow level in 9 B at 16.7 MeV • Width of energy level unknown • Enhancement of reaction 7 Be(d, γ ) 9 B and 7 Be(d,p) αα (E R , Γ d ) ~ (170-220,10-40) • keV , 7 Li/H = (2.5 - 6) x 10 -10 • Needs experimental verification

  18. Cyburt and Pospelov • Identified a narrow level in 9 B at 16.7 MeV • Width of energy level unknown • Enhancement of reaction 1.23e-10 7 Be(d, γ ) 9 B and 7 Be(d,p) αα 2.0e-10 (E R , Γ d ) ~ (170-220,10-40) 3.0e-10 • keV , 4.0e-10 7 Li/H = (2.5 - 6) x 10 -10 • Needs experimental Observations verification

  19. Systematic Search for the “Hoyle” State • Need other options ready • Want to try all conceivable resonances • Not infinite choices !! • Lock on to our targets - 7 Li, 7 Be • Ready our projectiles - n,p,t, 3 He, 4 He, and photons • Destroy !!!

  20. Candidate resonance selection • Compound nuclei of masses 8 to 11 • Obey selection rules • 2 body - 2 body reactions • Existing resonances not included in BBN estimates • New or missed resonances

  21. data mining

  22. data mining

  23. data mining

  24. LIST(S) of Candidates

  25. some more

  26. And more

  27. You get the point !!!

  28. Final Candidates

  29. Final Candidates

  30. Final Candidates

  31. Final Candidates http://www.tunl.duke.edu/ nucldata/figures/10figs/

  32. Final Candidates http://www.tunl.duke.edu/ nucldata/figures/10figs/

  33. Final Candidates http://www.tunl.duke.edu/ nucldata/figures/10figs/

  34. Resonance parameters

  35. Resonance parameters 1.0 0.8 0.6 0.4 0.2 � 2 � 1 1 2 3 4

  36. Resonance parameters 1.0 0.8 0.6 Cross-Section 0.4 0.2 � 2 � 1 1 2 3 4 Energy

  37. Resonance parameters Strength Γ e ff 1.0 0.8 0.6 Cross-Section 0.4 0.2 � 2 � 1 1 2 3 4 Energy Resonance Energy E res

  38. Resonance parameters Strength Γ e ff 1.0 0.8 Width 0.6 Cross-Section Γ tot 0.4 0.2 � 2 � 1 1 2 3 4 Energy Resonance Energy E res

  39. Resonance parameters Strength Γ e ff 1.0 0.8 Width 0.6 Cross-Section Γ tot 0.4 0.2 � 2 � 1 1 2 3 4 Energy Resonance Energy E res Narrow Resonance Approximation

  40. Resonance parameters Strength Γ e ff Width Cross-Section Γ tot Energy Resonance Energy E res Narrow Resonance Approximation

  41. Resonance parameters Strength Γ e ff 1.0 0.8 Width Cross-Section 0.6 Γ tot 0.4 0.2 � 2 � 1 0 1 2 3 4 Energy Resonance Energy E res Narrow Resonance Approximation

  42. Resonance parameters Strength Γ e ff 1.0 0.8 Cross-Section 0.6 0.4 0.2 � 2 � 1 0 1 2 3 4 Energy Resonance Energy E res Narrow Resonance Approximation

  43. Our bets

  44. Our bets

  45. Our bets

  46. Our bets Problem solved !!

  47. Our bets

  48. Our bets

  49. Our bets

  50. Our bets

  51. Our bets

  52. Our bets

  53. Our bets

  54. Do we have any Standard Model solutions ? • Potentially yes → Nuclear resonances • Complete or partial match - 7 Be + d → p + 2 α (Cyburt and Pospelov, (2009) and competing channels) - 7 Be + t → Inelastic (Chakraborty, Fields and Olive, 2010) - 7 Be + 3 He → Inelastic (Chakraborty, Fields and Olive, 2010) - Missed resonances / levels • Testable by current nuclear experiments • We may be able to avoid new physics

  55. We know reactions pretty well Cyburt, Fields and Olive (2008)

  56. Resonant rate 2 π µK � 2 ω Γ 1 Γ 2 T − 3 / 2 exp( − E R /KT ) λ = N A Γ tot

  57. History of the elements t ∝ T -2 Radiation dominated

Recommend


More recommend