the octagon method for finding exceptional points and
play

The octagon method for finding exceptional points, and application - PowerPoint PPT Presentation

Institute of Theoretical Physics, University of Stuttgart, in collaboration with M. Feldmaier, F. Schweiner, J. Main, and H. Cartarius The octagon method for finding exceptional points, and application to hydrogen-like systems in parallel


  1. Institute of Theoretical Physics, University of Stuttgart, in collaboration with M. Feldmaier, F. Schweiner, J. Main, and H. Cartarius The octagon method for finding exceptional points, and application to hydrogen-like systems in parallel electric and magnetic fields G¨ unter Wunner Institute of Theoretical Physics, University of Stuttgart, in collaboration with M. Feldmaier, F. Schweiner, J. Main, and H. Cartarius Prague, 6 June 2016

  2. The coworkers M. Feldmaier F. Schweiner J. Main H. Cartarius G¨ unter Wunner (ITP1) Rydberg systems in parallel electric and magnetic fields Prague, 6 June 2016 2 / 20

  3. A feature of open quantum systems: Resonances exhibit avoided crossings on the real energy axis when the physical parameters of the systems are varied: example: hydrogen atom in parallel electric and magnetic fields G¨ unter Wunner (ITP1) Rydberg systems in parallel electric and magnetic fields Prague, 6 June 2016 3 / 20

  4. A feature of open quantum systems: Resonances exhibit avoided crossings on the real energy axis when the physical parameters of the systems are varied: example: hydrogen atom in parallel electric and magnetic fields Indicative of an exceptional point in the complex energy plane. G¨ unter Wunner (ITP1) Rydberg systems in parallel electric and magnetic fields Prague, 6 June 2016 3 / 20

  5. A feature of open quantum systems: Resonances exhibit avoided crossings on the real energy axis when the physical parameters of the systems are varied: example: hydrogen atom in parallel electric and magnetic fields Indicative of an exceptional point in the complex energy plane. How to find the exceptional point? G¨ unter Wunner (ITP1) Rydberg systems in parallel electric and magnetic fields Prague, 6 June 2016 3 / 20

  6. Motivation Experiments on excitons in Cu 2 O in the group of D. Fr¨ ohlich and M. Beyer at the University of Dortmund band structure of Cu 2 O Excitons: electron-hole pairs in semiconductors - hydrogen-like systems G¨ unter Wunner (ITP1) Rydberg systems in parallel electric and magnetic fields Prague, 6 June 2016 4 / 20

  7. Motivation Experiments on excitons in Cu 2 O in the group of D. Fr¨ ohlich and M. Beyer: 1.0 b a n = 3 30 mm 0.5 n = 2 0.0 2.145 2.150 2.155 2.160 2.165 2.170 1.0 Tsumeb mine Namibia n = 6 n = 5 y 0.5 t i c s n e d l a 2.168 2.169 2.170 2.171 2.172 c i t 5 mm p 0.6 O n = 12 n = 13 16 mm 0.4 d 2.1716 2.1718 n = 25 n = 23 × 6 n = 22 n = 24 0.38 0.37 2.17190 2.17192 2.17194 Photon energy (eV) T. Kazimierczuk et al. ” Giant Rydberg excitons in the copper oxide Cu2O .” Nature (2014) G¨ unter Wunner (ITP1) Rydberg systems in parallel electric and magnetic fields Prague, 6 June 2016 5 / 20

  8. Rydberg excitons in magnetic and electric fields Reference field strengths: � eB 0 m = 2 E Ryd , ea Bohr F 0 = 2 E Ryd G¨ unter Wunner (ITP1) Rydberg systems in parallel electric and magnetic fields Prague, 6 June 2016 6 / 20

  9. Rydberg excitons in magnetic and electric fields Reference field strengths: � eB 0 m = 2 E Ryd , ea Bohr F 0 = 2 E Ryd H Cu 2 O E Ryd 13 . 6 eV 0 . 092 eV a Bohr 0 . 0529 nm 1 . 04 nm 2 . 35 × 10 5 T 6 . 034 × 10 2 T B 0 5 . 14 × 10 9 V/cm 1 . 76 × 10 6 V/cm F 0 G¨ unter Wunner (ITP1) Rydberg systems in parallel electric and magnetic fields Prague, 6 June 2016 6 / 20

  10. Rydberg systems in parallel electr. and magnet. fields Hydrogen atom: L z + e 2 B 2 H hyd = p 2 e 2 1 r + e B x 2 + y 2 � � − + e F z 2 m 0 4 πε 0 2 m 0 8 m 0 m p /m 0 ≈ 1800 → m p can be taken as approx. infinite G¨ unter Wunner (ITP1) Rydberg systems in parallel electric and magnetic fields Prague, 6 June 2016 7 / 20

  11. Rydberg systems in parallel electr. and magnet. fields Hydrogen atom: L z + e 2 B 2 H hyd = p 2 e 2 r + e B 1 x 2 + y 2 � � − + e F z 2 m 0 4 πε 0 2 m 0 8 m 0 m p /m 0 ≈ 1800 → m p can be taken as approx. infinite Rydberg excitons: L z + e 2 B 2 H ex = p 2 e 2 1 r + e B m h − m e x 2 + y 2 � � 2 µ − + e F z 4 πε 0 ε r 2 µ m h + m e 8 µ m e = 0 . 99 m 0 , m h = 0 . 62 m 0 → both masses are important, µ = 0 . 38 m 0 G¨ unter Wunner (ITP1) Rydberg systems in parallel electric and magnetic fields Prague, 6 June 2016 7 / 20

  12. Rydberg systems in parallel electr. and magnet. fields L z + e 2 B 2 H ex = p 2 e 2 1 r + e B m h − m e x 2 + y 2 � � 2 µ − + e F z 4 πε 0 ε r 2 µ m h + m e 8 µ parallel fields: → angular momentum is conserved with respect to z -axis ( L z → m ) → paramagnetic term: B -dependent shift of zero point energy H ′ = H − H P G¨ unter Wunner (ITP1) Rydberg systems in parallel electric and magnetic fields Prague, 6 June 2016 8 / 20

  13. Rydberg systems in parallel electr. and magnet. fields L z + e 2 B 2 H ex = p 2 e 2 1 r + e B m h − m e x 2 + y 2 � � 2 µ − + e F z 4 πε 0 ε r 2 µ m h + m e 8 µ parallel fields: → angular momentum is conserved with respect to z -axis ( L z → m ) → paramagnetic term: B -dependent shift of zero point energy H ′ = H − H P in dimensionless units: lengths in a Bohr , energies in 2 E Ryd , γ = B/B 0 and f = F/F 0 G¨ unter Wunner (ITP1) Rydberg systems in parallel electric and magnetic fields Prague, 6 June 2016 8 / 20

  14. Rydberg systems in parallel electr. and magnet. fields L z + e 2 B 2 H ex = p 2 e 2 1 r + e B m h − m e x 2 + y 2 � � 2 µ − + e F z 4 πε 0 ε r 2 µ m h + m e 8 µ parallel fields: → angular momentum is conserved with respect to z -axis ( L z → m ) → paramagnetic term: B -dependent shift of zero point energy H ′ = H − H P in dimensionless units: lengths in a Bohr , energies in 2 E Ryd , γ = B/B 0 and f = F/F 0 Hamiltonian of hydrogen-like systems in parallel fields H ′ = 1 2 p 2 − 1 r + 1 x 2 + y 2 � 8 γ 2 � + f z G¨ unter Wunner (ITP1) Rydberg systems in parallel electric and magnetic fields Prague, 6 June 2016 8 / 20

  15. In electric fields: bound states → resonances Coulomb potential: Coulomb-Stark potential: 2 4 − const | x | + f x 0 resonance 0 − 2 V ( x ) V ( x ) − 4 − const − 4 | x | bound − 6 − 8 state − 9 − 6 − 3 0 3 − 9 − 6 − 3 0 3 x x ” resonances” : non-stationary or quasi-bound states Ψ( r, 0) in position space time evolution: Ψ( r, t ) = e − i E t � Ψ( r, 0) complex energy E = E r − i Γ 2 resonances with complex energy eigenvalues can be calculated by solving the Schr¨ odinger equation using the complex rotation method G¨ unter Wunner (ITP1) Rydberg systems in parallel electric and magnetic fields Prague, 6 June 2016 9 / 20

  16. Finding exceptional points: Octagon method close to an EP: describe two related states by 2d matrix M kl = a (0) kl + a ( γ ) kl ( γ − γ 0 ) + a ( f ) kl ( f − f 0 ) , γ 0 , f 0 : initial guesses for the eigenvalues E 1 and E 2 of M we set: κ ≡ E 1 + E 2 = tr( M ) = A + B ( γ − γ 0 ) + C ( f − f 0 ) , η ≡ ( E 1 − E 2 ) 2 = tr 2 ( M ) − 4 det( M ) = D + E ( γ − γ 0 ) + F ( f − f 0 ) + G ( γ − γ 0 ) 2 + H ( γ − γ 0 ) ( f − f 0 ) + I ( f − f 0 ) 2 , G¨ unter Wunner (ITP1) Rydberg systems in parallel electric and magnetic fields Prague, 6 June 2016 10 / 20

  17. Finding exceptional points: Octagon method close to an EP: describe two related states by 2d matrix M kl = a (0) kl + a ( γ ) kl ( γ − γ 0 ) + a ( f ) kl ( f − f 0 ) , γ 0 , f 0 : initial guesses for the eigenvalues E 1 and E 2 of M we set: κ ≡ E 1 + E 2 = tr( M ) = A + B ( γ − γ 0 ) + C ( f − f 0 ) , η ≡ ( E 1 − E 2 ) 2 = tr 2 ( M ) − 4 det( M ) = D + E ( γ − γ 0 ) + F ( f − f 0 ) + G ( γ − γ 0 ) 2 + H ( γ − γ 0 ) ( f − f 0 ) + I ( f − f 0 ) 2 , 3 B = κ 1 − κ 5 A = κ 0 4 2 2 h γ h f C = κ 3 − κ 7 D = η 0 2 h f 5 0 1 F = η 3 − η 7 f E = η 1 − η 5 h γ 2 h γ 2 h f I = η 3 + η 7 − 2 η 0 G = η 1 + η 5 − 2 η 0 6 8 2 h 2 2 h 2 γ f 7 H = η 2 − η 4 + η 6 − η 8 γ 2 h γ h f G¨ unter Wunner (ITP1) Rydberg systems in parallel electric and magnetic fields Prague, 6 June 2016 10 / 20

  18. Octagon method: iterative algorithm estimate the new position ( γ EP , f EP ) of EP: 0 = η ≡ ( E 1 − E 2 ) 2 = D + E x + F y + G x 2 + H x y + I y 2 with x ≡ ( γ EP − γ 0 ) and y ≡ ( f EP − f 0 ) . Choose the correct one of four (complex) solutions. G¨ unter Wunner (ITP1) Rydberg systems in parallel electric and magnetic fields Prague, 6 June 2016 11 / 20

  19. Octagon method: iterative algorithm estimate the new position ( γ EP , f EP ) of EP: 0 = η ≡ ( E 1 − E 2 ) 2 = D + E x + F y + G x 2 + H x y + I y 2 with x ≡ ( γ EP − γ 0 ) and y ≡ ( f EP − f 0 ) . Choose the correct one of four (complex) solutions. Iterative algorithm to find position ( γ EP , f EP ) of EP position estimate γ ( n ) EP , f ( n ) EP in step n is taken as the centre point of a new octagon in step n + 1 γ ( n +1) = γ ( n ) n →∞ γ ( n ) EP ; γ EP = lim 0 0 f ( n +1) = f ( n ) n →∞ f ( n ) EP ; f EP = lim 0 0 G¨ unter Wunner (ITP1) Rydberg systems in parallel electric and magnetic fields Prague, 6 June 2016 11 / 20

Recommend


More recommend