the local hamiltonian problem
play

the local Hamiltonian problem Thomas Vidick Caltech Joint work - PowerPoint PPT Presentation

A multiprover interactive proof system for the local Hamiltonian problem Thomas Vidick Caltech Joint work with Joseph Fitzsimons SUTD and CQT, Singapore Outline 1. Local verification of classical & quantum proofs 2. Quantum multiplayer


  1. A multiprover interactive proof system for the local Hamiltonian problem Thomas Vidick Caltech Joint work with Joseph Fitzsimons SUTD and CQT, Singapore

  2. Outline 1. Local verification of classical & quantum proofs 2. Quantum multiplayer games 3. Result: a game for the local Hamiltonian problem 4. Consequences: a) The quantum PCP conjecture b) Quantum interactive proof systems

  3. Local verification of classical proofs β€’ NP = { decision problems β€œdoes 𝑦 have property 𝑄? ” that have polynomial-time verifiable proofs } β€’ Ex: Clique, chromatic number, Hamiltonian path β€’ 3D Ising spin β€’ Pancake sorting, Modal logic S5-Satisfiability, Super Mario, Lemmings β€’ Cook-Levin theorem: 3-SAT is complete for NP Graph 𝐻 β†’ 3 -SAT formula πœ’ 𝐻 3-colorable ⇔ πœ’ satisfiable β€’ Consequence: all problems in NP have local verification procedures 0 1 0 1 0 1 0 1 1 1 1 0 β€’ Do we even need 0 the whole proof? 𝑦 8 ? 0 0 𝑦 5 ? 𝐷 10 𝑦 = 𝑦 3 ∨ 𝑦 5 ∨ 𝑦 8 ? 𝑦 3 ? β€’ Proof required to guarantee consistency of assignment βˆƒπ‘¦, πœ’ 𝑦 = 𝐷 1 𝑦 ∧ 𝐷 2 𝑦 ∧ β‹― ∧ 𝐷 𝑛 𝑦 = 1? Is 𝐻 3-colorable?

  4. Multiplayer games: the power of two Merlins 0 1 0 1 0 1 0 1 β€’ Arthur (β€œreferee”) asks questions β€’ Two isolated Merlins (β€œplayers”) 0,0,0 1 β€’ Arthur checks answers. 𝐷 10 ? 𝑦 8 ? β€’ Value πœ• 𝐻 = sup Merlins Pr[Arthur accepts] β€’ Ex: 3-SAT game 𝐻 = 𝐻 πœ’ 𝐷 10 𝑦 = 𝑦 3 ∨ 𝑦 5 ∨ 𝑦 8 ? check satisfaction + consistency βˆƒπ‘¦, πœ’ 𝑦 = 𝐷 1 𝑦 ∧ 𝐷 2 𝑦 ∧ β‹― ∧ 𝐷 𝑛 𝑦 = 1? πœ’ SAT ⇔ πœ• 𝐻 πœ’ = 1 β€’ Consequence: All languages in NP have truly local verification procedure β€’ PCP Theorem: poly-time 𝐻 πœ’ β†’ 𝐻 πœ’ such that πœ• 𝐻 πœ’ = 1 ⟹ πœ• 𝐻 πœ’ = 1 πœ• 𝐻 πœ’ < 1 ⟹ πœ• 𝐻 πœ’ ≀ 0.9

  5. Local verification of quantum proofs β€’ QMA = { decision problems β€œdoes 𝑦 have property 𝑄 ” that have quantum polynomial-time verifiable quantum proofs } β€’ Ex: quantum circuit-sat, unitary non-identity check β€’ Consistency of local density matrices, N-representability β€’ [Kitaev’99,Kempe - Regev’03] 3-local Hamiltonian is complete for QMA 𝐼 = 𝑗 𝐼 𝑗 , each 𝐼 𝑗 acts on 3 out of π‘œ qubits. Decide: βˆƒ|Ξ“βŒͺ , Ξ“ 𝐼 Ξ“ ≀ 𝑏 = 2 βˆ’π‘ž π‘œ , or βˆ€|Ξ¦βŒͺ , Ξ¦ 𝐼 Ξ¦ β‰₯ 𝑐 = 1/π‘Ÿ(π‘œ) ? |πœ”βŒͺ β€’ Still need Merlin to provide complete state βŒ©Ξ“|𝐼 10 |Ξ“βŒͺ ? β€’ Today: is β€œtruly local” verification of QMA problems possible? Is 𝑉 βˆ’ 𝑓 π‘—πœ’ Id > πœ€ ? βˆƒ Ξ“ , Ξ“ 𝐼 1 Ξ“ + β‹― βŒ©Ξ“|𝐼 𝑛 Ξ“ ≀ 𝑏?

  6. Outline 1. Local verification of classical & quantum proofs 2. Quantum multiplayer games 3. Result: a game for the local Hamiltonian problem 4. Consequences: a) The quantum PCP conjecture b) Quantum interactive proof systems

  7. Quantum multiplayer games β€’ Quantum Arthur exchanges quantum messages with quantum Merlins Quantum Merlins may use shared entanglement β€’ Value πœ• βˆ— 𝐻 = sup Merlins Pr[Arthur accepts] Measure Ξ  = {Ξ  𝑏𝑑𝑑 , Ξ  π‘ π‘“π‘˜ } β€’ Quantum messages β†’ more power to Arthur [KobMat’03 ] Quantum Arthur with non-entangled Merlins limited to NP β€’ Entanglement β†’ more power to Merlins… and to Arthur? β€’ Can Arthur use entangled Merlins to his advantage?

  8. The power of entangled Merlins (1) The clause-vs-variable game 0,0,0 β€’ No entanglement: 1 πœ• 𝐻 πœ’ = 1 ⇔ πœ’ SAT 𝐷 10 ? 𝑦 8 ? β€’ Magic Square game: βˆƒ 3-SAT πœ’ , πœ’ UNSAT but πœ• βˆ— 𝐻 πœ’ = 1! 𝐷 10 𝑦 = 𝑦 3 ∨ 𝑦 5 ∨ 𝑦 8 ? βˆƒπ‘¦, πœ’ 𝑦 = 𝐷 1 𝑦 ∧ 𝐷 2 𝑦 ∧ β‹― ∧ 𝐷 𝑛 𝑦 = 1? β€’ Not a surprise: πœ• βˆ— 𝐻 ≫ πœ• 𝐻 is nothing else than Bell inequality violation 𝐻 πœ’ s.t. πœ’ SAT ⇔ πœ• βˆ— β€’ [KKMTV’08,IKM’09] More complicated πœ’ β†’ 𝐻 πœ’ = 1 β†’ Arthur can still use entangled Merlins to decide problems in NP β€’ Can Arthur use entangled Merlins to decide QMA problems?

  9. The power of entangled Merlins (2) A Hamiltonian-vs-qubit game? β€’ Given 𝐼 , can we design 𝐻 = 𝐻 𝐼 s.t.: β‡’ πœ• βˆ— 𝐻 β‰ˆ 1 βˆƒ|Ξ“βŒͺ , Ξ“ 𝐼 Ξ“ ≀ 𝑏 𝐼 10 ? π‘Ÿ 8 ? βˆ€|Ξ¦βŒͺ , Ξ¦ 𝐼 Ξ¦ β‰₯ 𝑐 β‡’ πœ• βˆ— 𝐻 β‰ͺ 1 β€’ Some immediate difficulties: βŒ©Ξ“|𝐼 10 |Ξ“βŒͺ ? β€’ Cannot check for equality βˆƒ Ξ“ , Ξ“ 𝐼 1 Ξ“ + β‹― βŒ©Ξ“|𝐼 𝑛 Ξ“ ≀ 𝑏? of reduced densities β€’ Local consistency ⇏ global consistency (deciding whether this holds is itself a QMA-complete problem) β€’ [KobMat03] Need to use entanglement to go beyond NP β€’ Idea: split proof qubits between Merlins

  10. The power of entangled Merlins (2) A Hamiltonian-vs-qubit game? 𝐼 5 𝐼 4 β€’ [ AGIK’09] Assume 𝐼 is 1D π‘Ÿ 4 ? π‘Ÿ 3 ? π‘Ÿ 5 ? 𝐼 4 𝐼 2 𝐼 π‘œβˆ’1 𝐼 1 𝐼 3 + + + + + + β€’ Merlin 1 takes even qubits, βŒ©Ξ“|𝐼 4 |Ξ“βŒͺ ? βŒ©Ξ“|𝐼 5 |Ξ“βŒͺ ? Merlin 2 takes odd qubits βˆƒ Ξ“ , Ξ“ 𝐼 1 Ξ“ + β‹― βŒ©Ξ“|𝐼 𝑛 Ξ“ ≀ 𝑏? β€’ πœ• βˆ— 𝐻 𝐼 = 1 β‡’ βˆƒ|Ξ“βŒͺ , Ξ“ 𝐼 Ξ“ β‰ˆ 0 ? β€’ Bad example: the EPR Hamiltonian 𝐼 𝑗 = 𝐹𝑄𝑆 βŒ©πΉπ‘„π‘†| 𝑗,𝑗+1 for all 𝑗 + + + + + + β€’ Highly frustrated, but πœ• βˆ— 𝐻 𝐼 = 1 !

  11. The difficulty ?

  12. The difficulty ? Can we check existence of global state |Ξ“βŒͺ from β€œlocal snapshots” only?

  13. Outline 1. Checking proofs locally 2. Entanglement in quantum multiplayer games 3. Result: a quantum multiplayer game for the local Hamiltonian problem 4. Consequences: 1. The quantum PCP conjecture 2. Quantum interactive proof systems

  14. Result: a five-player game for LH Given 3-local 𝐼 on π‘œ qubits, design 5-player 𝐻 = 𝐻 𝐼 such that: β‡’ πœ• βˆ— 𝐻 β‰₯ 1 βˆ’ 𝑏/2 β€’ βˆƒ|Ξ“βŒͺ , Ξ“ 𝐼 Ξ“ ≀ 𝑏 β€’ βˆ€|Ξ¦βŒͺ , Ξ¦ 𝐼 Ξ¦ β‰₯ 𝑐 β‡’ πœ• βˆ— 𝐻 ≀ 1 βˆ’ 𝑐/π‘œ 𝑑 𝑗, π‘˜, 𝑙 ? 𝑗′, π‘˜β€², 𝑙′ ? β€’ Consequence: the value πœ• βˆ— 𝐻 for 𝐻 with π‘œ classical questions, 3 answer qubits, 5 players, is 𝑅𝑁𝐡 -hard to compute to within Β±1/π‘žπ‘π‘šπ‘§(π‘œ) β†’ Strictly harder than non -entangled value πœ•(𝐻) (unless NP=QMA) β€’ Consequence: 𝑅𝑁𝐽𝑄 ⊊ 𝑅𝑁𝐽𝑄 βˆ— 1 βˆ’ 2 βˆ’π‘ž , 1 βˆ’ 2 β‹… 2 βˆ’π‘ž (unless π‘‚πΉπ‘Œπ‘„ = 𝑅𝑁𝐡 πΉπ‘Œπ‘„ )

  15. |Ξ“βŒͺ The game 𝐻 = 𝐻 𝐼 πΉπ‘œπ‘‘ β€’ ECC 𝐹 corrects β‰₯ 1 error (ex: 5 -qubit Steane code) β€’ Arthur runs two tests (prob 1/2 each): π‘Ÿ 5 π‘Ÿ 3 , π‘Ÿ 5 , π‘Ÿ 8 π‘Ÿ 5 Select random 𝐼 β„“ on π‘Ÿ 𝑗 , π‘Ÿ π‘˜ , π‘Ÿ 𝑙 1. a) Ask each Merlin for its share of π‘Ÿ 𝑗 , π‘Ÿ π‘˜ , π‘Ÿ 𝑙 b) Decode 𝐹 π‘Ÿ 5 βŒ©Ξ“|𝐼 10 |Ξ“βŒͺ ? c) Measure 𝐼 β„“ βˆƒ Ξ“ , Ξ“ 𝐼 1 Ξ“ + β‹― βŒ©Ξ“|𝐼 𝑛 Ξ“ ≀ 𝑏? Select random 𝐼 β„“ on π‘Ÿ 𝑗 , π‘Ÿ π‘˜ , π‘Ÿ 𝑙 2. a) Ask one (random) Merlin for its share of π‘Ÿ 𝑗 , π‘Ÿ π‘˜ , π‘Ÿ 𝑙 . Select 𝑑 ∈ 𝑗, π‘˜, 𝑙 at random; ask remaining Merlins for their share of π‘Ÿ 𝑑 b) Verify that all shares of π‘Ÿ 𝑑 lie in codespace β€’ Completeness: βˆƒ|Ξ“βŒͺ , Ξ“ 𝐼 Ξ“ ≀ 𝑏 β‡’ πœ• βˆ— 𝐻 β‰₯ 1 βˆ’ 𝑏/2

  16. Soundness: cheating Merlins (1) β€’ Example: EPR Hamiltonian πΉπ‘œπ‘‘ πΉπ‘œπ‘‘ β€’ Cheating Merlins share single EPR pair β€’ On question 𝐼 β„“ = {π‘Ÿ β„“ , π‘Ÿ β„“+1 } , all Merlins sends back both shares of EPR β€’ On question π‘Ÿ 𝑗 , all Merlins send back their share of first half of EPR β€’ All Merlins asked 𝐼 β„“ β†’ Arthur decodes correctly and verifies low energy β€’ One Merlin asked 𝐼 𝑗 = {π‘Ÿ 𝑗 , π‘Ÿ 𝑗+1 } or 𝐼 π‘—βˆ’1 = {π‘Ÿ π‘—βˆ’1 , π‘Ÿ 𝑗 } , others asked π‘Ÿ 𝑗 β€’ If 𝐼 𝑗 , Arthur checks his first half with other Merlin’s β†’ accept β€’ If 𝐼 𝑗+1 , Arthur checks his second half with otherMerlin’s β†’ reject β€’ Answers from 4 Merlins + code property commit remaining Merlin’s qubit

  17. Soundness: cheating Merlins (2) β€’ Goal: show βˆ€|Ξ¦βŒͺ , Ξ¦ 𝐼 Ξ¦ β‰₯ 𝑐 β‡’ πœ• βˆ— 𝐻 ≀ 1 βˆ’ 𝑐/π‘œ 𝑑 β€’ Contrapositive: πœ• βˆ— 𝐻 > 1 βˆ’ 𝑐/π‘œ 𝑑 β‡’ βˆƒ|Ξ“βŒͺ , Ξ“ 𝐼 Ξ“ < 𝑐 β†’ extract low-energy witness from successful Merlin’s strategies β€’ Given: ? 1 β€’ 5 -prover entangled state πœ” 𝑉 𝑗 β€’ For each 𝑗 , unitary 𝑉 𝑗 extracts π‘Ÿ 𝑗 |πœ”βŒͺ 𝐸𝐹𝐷 Merlin’s answer qubit to π‘Ÿ 𝑗 2 2 𝑉 𝑗 𝑉 ?? π‘˜ β€’ For each term 𝐼 β„“ on π‘Ÿ 𝑗 , π‘Ÿ π‘˜ , π‘Ÿ 𝑙 , unitary π‘Š β„“ extracts {π‘Ÿ 𝑗 , π‘Ÿ π‘˜ , π‘Ÿ 𝑙 } β€’ Unitaries local to each Merlin, but no a priori notion of qubit β€’ Need to simultaneously extract π‘Ÿ 1 , π‘Ÿ 2 , π‘Ÿ 3 , …

  18. Soundness: cheating Merlins (3) We give circuit generating low-energy witness |Ξ“βŒͺ from successful Merlin’s strategies π‘Ÿ 1 π‘Ÿ 2

  19. Outline 1. Checking proofs locally 2. Entanglement in quantum multiplayer games 3. Result: a quantum multiplayer game for the local Hamiltonian problem 4. Consequences: 1. The quantum PCP conjecture 2. Quantum interactive proof systems

Recommend


More recommend