A multiprover interactive proof system for the local Hamiltonian problem Thomas Vidick Caltech Joint work with Joseph Fitzsimons SUTD and CQT, Singapore
Outline 1. Local verification of classical & quantum proofs 2. Quantum multiplayer games 3. Result: a game for the local Hamiltonian problem 4. Consequences: a) The quantum PCP conjecture b) Quantum interactive proof systems
Local verification of classical proofs β’ NP = { decision problems βdoes π¦ have property π? β that have polynomial-time verifiable proofs } β’ Ex: Clique, chromatic number, Hamiltonian path β’ 3D Ising spin β’ Pancake sorting, Modal logic S5-Satisfiability, Super Mario, Lemmings β’ Cook-Levin theorem: 3-SAT is complete for NP Graph π» β 3 -SAT formula π π» 3-colorable β π satisfiable β’ Consequence: all problems in NP have local verification procedures 0 1 0 1 0 1 0 1 1 1 1 0 β’ Do we even need 0 the whole proof? π¦ 8 ? 0 0 π¦ 5 ? π· 10 π¦ = π¦ 3 β¨ π¦ 5 β¨ π¦ 8 ? π¦ 3 ? β’ Proof required to guarantee consistency of assignment βπ¦, π π¦ = π· 1 π¦ β§ π· 2 π¦ β§ β― β§ π· π π¦ = 1? Is π» 3-colorable?
Multiplayer games: the power of two Merlins 0 1 0 1 0 1 0 1 β’ Arthur (βrefereeβ) asks questions β’ Two isolated Merlins (βplayersβ) 0,0,0 1 β’ Arthur checks answers. π· 10 ? π¦ 8 ? β’ Value π π» = sup Merlins Pr[Arthur accepts] β’ Ex: 3-SAT game π» = π» π π· 10 π¦ = π¦ 3 β¨ π¦ 5 β¨ π¦ 8 ? check satisfaction + consistency βπ¦, π π¦ = π· 1 π¦ β§ π· 2 π¦ β§ β― β§ π· π π¦ = 1? π SAT β π π» π = 1 β’ Consequence: All languages in NP have truly local verification procedure β’ PCP Theorem: poly-time π» π β π» π such that π π» π = 1 βΉ π π» π = 1 π π» π < 1 βΉ π π» π β€ 0.9
Local verification of quantum proofs β’ QMA = { decision problems βdoes π¦ have property π β that have quantum polynomial-time verifiable quantum proofs } β’ Ex: quantum circuit-sat, unitary non-identity check β’ Consistency of local density matrices, N-representability β’ [Kitaevβ99,Kempe - Regevβ03] 3-local Hamiltonian is complete for QMA πΌ = π πΌ π , each πΌ π acts on 3 out of π qubits. Decide: β|Ξβͺ , Ξ πΌ Ξ β€ π = 2 βπ π , or β|Ξ¦βͺ , Ξ¦ πΌ Ξ¦ β₯ π = 1/π(π) ? |πβͺ β’ Still need Merlin to provide complete state β©Ξ|πΌ 10 |Ξβͺ ? β’ Today: is βtruly localβ verification of QMA problems possible? Is π β π ππ Id > π ? β Ξ , Ξ πΌ 1 Ξ + β― β©Ξ|πΌ π Ξ β€ π?
Outline 1. Local verification of classical & quantum proofs 2. Quantum multiplayer games 3. Result: a game for the local Hamiltonian problem 4. Consequences: a) The quantum PCP conjecture b) Quantum interactive proof systems
Quantum multiplayer games β’ Quantum Arthur exchanges quantum messages with quantum Merlins Quantum Merlins may use shared entanglement β’ Value π β π» = sup Merlins Pr[Arthur accepts] Measure Ξ = {Ξ πππ , Ξ π ππ } β’ Quantum messages β more power to Arthur [KobMatβ03 ] Quantum Arthur with non-entangled Merlins limited to NP β’ Entanglement β more power to Merlinsβ¦ and to Arthur? β’ Can Arthur use entangled Merlins to his advantage?
The power of entangled Merlins (1) The clause-vs-variable game 0,0,0 β’ No entanglement: 1 π π» π = 1 β π SAT π· 10 ? π¦ 8 ? β’ Magic Square game: β 3-SAT π , π UNSAT but π β π» π = 1! π· 10 π¦ = π¦ 3 β¨ π¦ 5 β¨ π¦ 8 ? βπ¦, π π¦ = π· 1 π¦ β§ π· 2 π¦ β§ β― β§ π· π π¦ = 1? β’ Not a surprise: π β π» β« π π» is nothing else than Bell inequality violation π» π s.t. π SAT β π β β’ [KKMTVβ08,IKMβ09] More complicated π β π» π = 1 β Arthur can still use entangled Merlins to decide problems in NP β’ Can Arthur use entangled Merlins to decide QMA problems?
The power of entangled Merlins (2) A Hamiltonian-vs-qubit game? β’ Given πΌ , can we design π» = π» πΌ s.t.: β π β π» β 1 β|Ξβͺ , Ξ πΌ Ξ β€ π πΌ 10 ? π 8 ? β|Ξ¦βͺ , Ξ¦ πΌ Ξ¦ β₯ π β π β π» βͺ 1 β’ Some immediate difficulties: β©Ξ|πΌ 10 |Ξβͺ ? β’ Cannot check for equality β Ξ , Ξ πΌ 1 Ξ + β― β©Ξ|πΌ π Ξ β€ π? of reduced densities β’ Local consistency β global consistency (deciding whether this holds is itself a QMA-complete problem) β’ [KobMat03] Need to use entanglement to go beyond NP β’ Idea: split proof qubits between Merlins
The power of entangled Merlins (2) A Hamiltonian-vs-qubit game? πΌ 5 πΌ 4 β’ [ AGIKβ09] Assume πΌ is 1D π 4 ? π 3 ? π 5 ? πΌ 4 πΌ 2 πΌ πβ1 πΌ 1 πΌ 3 + + + + + + β’ Merlin 1 takes even qubits, β©Ξ|πΌ 4 |Ξβͺ ? β©Ξ|πΌ 5 |Ξβͺ ? Merlin 2 takes odd qubits β Ξ , Ξ πΌ 1 Ξ + β― β©Ξ|πΌ π Ξ β€ π? β’ π β π» πΌ = 1 β β|Ξβͺ , Ξ πΌ Ξ β 0 ? β’ Bad example: the EPR Hamiltonian πΌ π = πΉππ β©πΉππ| π,π+1 for all π + + + + + + β’ Highly frustrated, but π β π» πΌ = 1 !
The difficulty ?
The difficulty ? Can we check existence of global state |Ξβͺ from βlocal snapshotsβ only?
Outline 1. Checking proofs locally 2. Entanglement in quantum multiplayer games 3. Result: a quantum multiplayer game for the local Hamiltonian problem 4. Consequences: 1. The quantum PCP conjecture 2. Quantum interactive proof systems
Result: a five-player game for LH Given 3-local πΌ on π qubits, design 5-player π» = π» πΌ such that: β π β π» β₯ 1 β π/2 β’ β|Ξβͺ , Ξ πΌ Ξ β€ π β’ β|Ξ¦βͺ , Ξ¦ πΌ Ξ¦ β₯ π β π β π» β€ 1 β π/π π π, π, π ? πβ², πβ², πβ² ? β’ Consequence: the value π β π» for π» with π classical questions, 3 answer qubits, 5 players, is π ππ΅ -hard to compute to within Β±1/ππππ§(π) β Strictly harder than non -entangled value π(π») (unless NP=QMA) β’ Consequence: π ππ½π β π ππ½π β 1 β 2 βπ , 1 β 2 β 2 βπ (unless ππΉππ = π ππ΅ πΉππ )
|Ξβͺ The game π» = π» πΌ πΉππ β’ ECC πΉ corrects β₯ 1 error (ex: 5 -qubit Steane code) β’ Arthur runs two tests (prob 1/2 each): π 5 π 3 , π 5 , π 8 π 5 Select random πΌ β on π π , π π , π π 1. a) Ask each Merlin for its share of π π , π π , π π b) Decode πΉ π 5 β©Ξ|πΌ 10 |Ξβͺ ? c) Measure πΌ β β Ξ , Ξ πΌ 1 Ξ + β― β©Ξ|πΌ π Ξ β€ π? Select random πΌ β on π π , π π , π π 2. a) Ask one (random) Merlin for its share of π π , π π , π π . Select π‘ β π, π, π at random; ask remaining Merlins for their share of π π‘ b) Verify that all shares of π π‘ lie in codespace β’ Completeness: β|Ξβͺ , Ξ πΌ Ξ β€ π β π β π» β₯ 1 β π/2
Soundness: cheating Merlins (1) β’ Example: EPR Hamiltonian πΉππ πΉππ β’ Cheating Merlins share single EPR pair β’ On question πΌ β = {π β , π β+1 } , all Merlins sends back both shares of EPR β’ On question π π , all Merlins send back their share of first half of EPR β’ All Merlins asked πΌ β β Arthur decodes correctly and verifies low energy β’ One Merlin asked πΌ π = {π π , π π+1 } or πΌ πβ1 = {π πβ1 , π π } , others asked π π β’ If πΌ π , Arthur checks his first half with other Merlinβs β accept β’ If πΌ π+1 , Arthur checks his second half with otherMerlinβs β reject β’ Answers from 4 Merlins + code property commit remaining Merlinβs qubit
Soundness: cheating Merlins (2) β’ Goal: show β|Ξ¦βͺ , Ξ¦ πΌ Ξ¦ β₯ π β π β π» β€ 1 β π/π π β’ Contrapositive: π β π» > 1 β π/π π β β|Ξβͺ , Ξ πΌ Ξ < π β extract low-energy witness from successful Merlinβs strategies β’ Given: ? 1 β’ 5 -prover entangled state π π π β’ For each π , unitary π π extracts π π |πβͺ πΈπΉπ· Merlinβs answer qubit to π π 2 2 π π π ?? π β’ For each term πΌ β on π π , π π , π π , unitary π β extracts {π π , π π , π π } β’ Unitaries local to each Merlin, but no a priori notion of qubit β’ Need to simultaneously extract π 1 , π 2 , π 3 , β¦
Soundness: cheating Merlins (3) We give circuit generating low-energy witness |Ξβͺ from successful Merlinβs strategies π 1 π 2
Outline 1. Checking proofs locally 2. Entanglement in quantum multiplayer games 3. Result: a quantum multiplayer game for the local Hamiltonian problem 4. Consequences: 1. The quantum PCP conjecture 2. Quantum interactive proof systems
Recommend
More recommend