the discrepancy function and the small ball inequality in
play

The Discrepancy Function and the Small Ball Inequality in Higher - PowerPoint PPT Presentation

The Discrepancy Function and the Small Ball Inequality in Higher Dimensions Dmitriy Bilyk Georgia Institute of Technology (joint work with M. Lacey and A. Vagharshakyan) 2007 Fall AMS Western Section Meeting University of New Mexico,


  1. The Discrepancy Function and the Small Ball Inequality in Higher Dimensions Dmitriy Bilyk Georgia Institute of Technology (joint work with M. Lacey and A. Vagharshakyan) 2007 Fall AMS Western Section Meeting University of New Mexico, Albuquerque, NM October 14, 2007 Bilyk Discrepancy Function and the Small Ball Inequality

  2. Geometric Discrepancy Let P N be an N point set in [0 , 1] d of and let R ⊂ [0 , 1] d be a rectangle with sides parallel to the axis. Bilyk Discrepancy Function and the Small Ball Inequality

  3. Geometric Discrepancy Let P N be an N point set in [0 , 1] d of and let R ⊂ [0 , 1] d be a rectangle with sides parallel to the axis. D ( P N , R ) = ♯ {P N ∩ R } − N · vol ( R ) Bilyk Discrepancy Function and the Small Ball Inequality

  4. Geometric Discrepancy Let P N be an N point set in [0 , 1] d of and let R ⊂ [0 , 1] d be a rectangle with sides parallel to the axis. D ( P N , R ) = ♯ {P N ∩ R } − N · vol ( R ) Star-discrepancy: D ( P N ) = sup | D ( P N , R ) | R Bilyk Discrepancy Function and the Small Ball Inequality

  5. Geometric Discrepancy Let P N be an N point set in [0 , 1] d of and let R ⊂ [0 , 1] d be a rectangle with sides parallel to the axis. D ( P N , R ) = ♯ {P N ∩ R } − N · vol ( R ) Star-discrepancy: D ( P N ) = sup | D ( P N , R ) | R D ( N ) = inf P N D ( P N ) Bilyk Discrepancy Function and the Small Ball Inequality

  6. Geometric Discrepancy Let P N be an N point set in [0 , 1] d of and let R ⊂ [0 , 1] d be a rectangle with sides parallel to the axis. D ( P N , R ) = ♯ {P N ∩ R } − N · vol ( R ) Star-discrepancy: D ( P N ) = sup | D ( P N , R ) | R D ( N ) = inf P N D ( P N ) Can D ( N ) be bounded? Bilyk Discrepancy Function and the Small Ball Inequality

  7. Geometric Discrepancy Let P N be an N point set in [0 , 1] d of and let R ⊂ [0 , 1] d be a rectangle with sides parallel to the axis. D ( P N , R ) = ♯ {P N ∩ R } − N · vol ( R ) Star-discrepancy: D ( P N ) = sup | D ( P N , R ) | R D ( N ) = inf P N D ( P N ) Can D ( N ) be bounded? NO (van Aardenne-Ehrenfest; Roth) Bilyk Discrepancy Function and the Small Ball Inequality

  8. Discrepancy function Enough to consider rectangles with a vertex at the origin Bilyk Discrepancy Function and the Small Ball Inequality

  9. Discrepancy function Enough to consider rectangles with a vertex at the origin D N ( x ) = ♯ {P N ∩ [0 , x ) } − Nx 1 x 2 . . . x d Bilyk Discrepancy Function and the Small Ball Inequality

  10. Discrepancy function Enough to consider rectangles with a vertex at the origin D N ( x ) = ♯ {P N ∩ [0 , x ) } − Nx 1 x 2 . . . x d Lower estimates for � D N � p ??? Bilyk Discrepancy Function and the Small Ball Inequality

  11. Koksma-Hlawka Inequality � � � � � � � � [0 , 1] d f ( x ) dx − 1 � 1 � � f ( p ) N V ( f ) · � D N � ∞ � � N � � p ∈P N Bilyk Discrepancy Function and the Small Ball Inequality

  12. Koksma-Hlawka Inequality � � � � � � � � [0 , 1] d f ( x ) dx − 1 � 1 � � f ( p ) N V ( f ) · � D N � ∞ � � N � � p ∈P N V ( f ) is the Hardy-Krause variation of f Bilyk Discrepancy Function and the Small Ball Inequality

  13. Koksma-Hlawka Inequality � � � � � � � � [0 , 1] d f ( x ) dx − 1 � 1 � � f ( p ) N V ( f ) · � D N � ∞ � � N � � p ∈P N V ( f ) is the Hardy-Krause variation of f � � � � � ∂ d f V ( f ) ” = ” � dx 1 . . . dx d � [0 , 1] d ∂ x 1 ∂ x 2 ...∂ x d Bilyk Discrepancy Function and the Small Ball Inequality

  14. An example √ √ Consider a N × N lattice Bilyk Discrepancy Function and the Small Ball Inequality

  15. An example √ √ Consider a N × N lattice Bilyk Discrepancy Function and the Small Ball Inequality

  16. An example √ √ Consider a N × N lattice √ 1 | D N ( P ) − D N ( Q ) | ≈ N · N = N √ Bilyk Discrepancy Function and the Small Ball Inequality

  17. An example √ √ Consider a N × N lattice √ 1 | D N ( P ) − D N ( Q ) | ≈ N · N = N √ 1 Thus � D N � ∞ � N 2 Bilyk Discrepancy Function and the Small Ball Inequality

  18. L p estimates, 1 < p < ∞ Theorem d − 1 � D N � p � (log N ) 2 Roth (p=2), Schmidt Bilyk Discrepancy Function and the Small Ball Inequality

  19. L p estimates, 1 < p < ∞ Theorem d − 1 � D N � p � (log N ) 2 Roth (p=2), Schmidt Theorem There exist P N ⊂ [0 , 1] d with d − 1 � D N � p ≈ (log N ) 2 (Davenport, Roth, Frolov, Chen) Bilyk Discrepancy Function and the Small Ball Inequality

  20. L ∞ estimates Conjecture d − 1 � D N � ∞ ≫ (log N ) 2 Bilyk Discrepancy Function and the Small Ball Inequality

  21. L ∞ estimates Conjecture d − 1 � D N � ∞ ≫ (log N ) 2 Theorem (Schmidt) For d = 2 we have � D N � ∞ � log N Bilyk Discrepancy Function and the Small Ball Inequality

  22. L ∞ estimates Conjecture d − 1 � D N � ∞ ≫ (log N ) 2 Theorem (Schmidt) For d = 2 we have � D N � ∞ � log N d = 2 van der Corput: There exist P N ⊂ [0 , 1] 2 with � D N � ∞ ≈ log N Bilyk Discrepancy Function and the Small Ball Inequality

  23. L ∞ estimates Conjecture d − 1 � D N � ∞ ≫ (log N ) 2 Theorem (Schmidt) For d = 2 we have � D N � ∞ � log N d = 2 van der Corput: There exist P N ⊂ [0 , 1] 2 with � D N � ∞ ≈ log N d ≥ 3 Halasz: There exist P N ⊂ [0 , 1] d with � D N � ∞ ≈ (log N ) d − 1 Bilyk Discrepancy Function and the Small Ball Inequality

  24. Conjectures Conjecture 1 � D N � ∞ � (log N ) d − 1 Bilyk Discrepancy Function and the Small Ball Inequality

  25. Conjectures Conjecture 1 � D N � ∞ � (log N ) d − 1 Conjecture 2 d � D N � ∞ � (log N ) 2 Bilyk Discrepancy Function and the Small Ball Inequality

  26. Roth’s Orthogonal Function Method: Definitions Dyadic intervals are intervals of the form [ k 2 q , ( k + 1)2 q ). Bilyk Discrepancy Function and the Small Ball Inequality

  27. Roth’s Orthogonal Function Method: Definitions Dyadic intervals are intervals of the form [ k 2 q , ( k + 1)2 q ). For a dyadic interval I : h I = − 1 I left + 1 I right , Haar functions with L ∞ normalization. Bilyk Discrepancy Function and the Small Ball Inequality

  28. Roth’s Orthogonal Function Method: Definitions Dyadic intervals are intervals of the form [ k 2 q , ( k + 1)2 q ). For a dyadic interval I : h I = − 1 I left + 1 I right , Haar functions with L ∞ normalization. In higher dimensions: for a rectangle R = I 1 × · · · × I d h R ( x 1 , . . . , x d ) := h I 1 ( x 1 ) · ... · h I d ( x d ) Bilyk Discrepancy Function and the Small Ball Inequality

  29. Roth’s Orthogonal Function Method: Definitions All rectangles are in the unit cube in R d . Bilyk Discrepancy Function and the Small Ball Inequality

  30. Roth’s Orthogonal Function Method: Definitions All rectangles are in the unit cube in R d . Choose n appropriately so that n ≈ log 2 N and consider dyadic rectangles of volume 2 − n . Bilyk Discrepancy Function and the Small Ball Inequality

  31. Roth’s Orthogonal Function Method: Definitions All rectangles are in the unit cube in R d . Choose n appropriately so that n ≈ log 2 N and consider dyadic rectangles of volume 2 − n . n = { ( r 1 , r 2 , . . . , r d ) ∈ N d : r 1 + · · · + r d = n } H d Bilyk Discrepancy Function and the Small Ball Inequality

  32. Roth’s Orthogonal Function Method: Definitions All rectangles are in the unit cube in R d . Choose n appropriately so that n ≈ log 2 N and consider dyadic rectangles of volume 2 − n . n = { ( r 1 , r 2 , . . . , r d ) ∈ N d : r 1 + · · · + r d = n } H d Definition r ∈ H d For � n , call f an � r function iff it is of the form � f = ε R h R , ε R ∈ {± 1 } . R : | R j | =2 − rj Bilyk Discrepancy Function and the Small Ball Inequality

  33. Roth’s Orthogonal Function Method: Proof r ∈ H d For each � n , there exists f r such that � D N , f r � � 1. Bilyk Discrepancy Function and the Small Ball Inequality

  34. Roth’s Orthogonal Function Method: Proof r ∈ H d For each � n , there exists f r such that � D N , f r � � 1. Construct the test function F = � n f r . r ∈ H d � Bilyk Discrepancy Function and the Small Ball Inequality

  35. Roth’s Orthogonal Function Method: Proof r ∈ H d For each � n , there exists f r such that � D N , f r � � 1. Construct the test function F = � n f r . r ∈ H d � n } ≈ n d − 1 ≈ (log N ) d − 1 . r ∈ H d ♯ { � Bilyk Discrepancy Function and the Small Ball Inequality

  36. Roth’s Orthogonal Function Method: Proof r ∈ H d For each � n , there exists f r such that � D N , f r � � 1. Construct the test function F = � n f r . r ∈ H d � n } ≈ n d − 1 ≈ (log N ) d − 1 . r ∈ H d ♯ { � d − 1 2 . � F � 2 ≈ (log N ) Bilyk Discrepancy Function and the Small Ball Inequality

  37. Roth’s Orthogonal Function Method: Proof r ∈ H d For each � n , there exists f r such that � D N , f r � � 1. Construct the test function F = � n f r . r ∈ H d � n } ≈ n d − 1 ≈ (log N ) d − 1 . r ∈ H d ♯ { � d − 1 2 . � F � 2 ≈ (log N ) � D N , F � � (log N ) d − 1 . Bilyk Discrepancy Function and the Small Ball Inequality

Recommend


More recommend