The Behavioral Approach to Systems Theory Paolo Rapisarda, Un. of Southampton, U.K. & Jan C. Willems, K.U.Leuven, Belgium MTNS 2006 Kyoto, Japan, July 24–28, 2006
Lecture 4: Bilinear and quadratic differential forms Lecturer: Paolo Rapisarda
Part I: Basics
Outline Motivation and aim Definition Two-variable polynomial matrices The calculus of B/QDFs
Dynamics and functionals in systems and control Instances: Lyapunov theory, performance criteria, etc. ⇒ quadratic and bilinear functionals. Linear case =
Dynamics and functionals in systems and control Instances: Lyapunov theory, performance criteria, etc. ⇒ quadratic and bilinear functionals. Linear case = Usually: state-space equations, constant functionals. However, tearing and zooming = ⇒ state space eq.s
Dynamics and functionals in systems and control Instances: Lyapunov theory, performance criteria, etc. ⇒ quadratic and bilinear functionals. Linear case = Usually: state-space equations, constant functionals. However, tearing and zooming = ⇒ state space eq.s ¡High-order differential equations! ...involving also latent variables ...
Example : a mechanical system d 2 w 1 m 1 + k 1 w 1 − k 1 w 2 = 0 dt 2 d 2 w 2 − k 1 w 1 + m 2 + ( k 1 + k 2 ) w 2 = 0 dt 2
Example : a mechanical system d 2 w 1 m 1 + k 1 w 1 − k 1 w 2 = 0 dt 2 d 2 w 2 − k 1 w 1 + m 2 + ( k 1 + k 2 ) w 2 = 0 dt 2 dt 4 w + ( k 1 m 1 + k 2 m 1 + k 1 m 2 ) d 2 d 4 m 1 m 2 dt 2 w + k 1 k 2 w = 0
Example : a mechanical system d 2 w 1 m 1 + k 1 w 1 − k 1 w 2 = 0 dt 2 d 2 w 2 − k 1 w 1 + m 2 + ( k 1 + k 2 ) w 2 = 0 dt 2 dt 4 w + ( k 1 m 1 + k 2 m 1 + k 1 m 2 ) d 2 d 4 m 1 m 2 dt 2 w + k 1 k 2 w = 0 ¿Stability, stored energy, conservation laws?
Aim An effective algebraic representation of bilinear and quadratic functionals of the system variables and their derivatives: Operations/properties of functionals � algebraic operations/properties of representation ...a calculus of these functionals!
Outline Motivation and aim Definition Two-variable polynomial matrices The calculus of B/QDFs
Bilinear differential forms (BDFs) � Φ k ,ℓ ∈ R w 1 × w 2 � Φ := k ,ℓ = 0 ,..., L L Φ : C ∞ ( R , R w 1 ) × C ∞ ( R , R w 2 ) → C ∞ ( R , R ) Φ 0 , 0 Φ 0 , 1 . . . Φ 1 , 0 Φ 1 , 1 . . . w 2 . . � � dw 2 . . ⊤ L Φ ( w 1 , w 2 ) := dw 1 · · · w ⊤ . . . . . dt 1 dt . Φ k , 0 Φ k , 1 . . . . . . . . . . . · · · � � ⊤ � � = � d k d ℓ dt k w 1 Φ k ,ℓ dt ℓ w 2 k ,ℓ
Quadratic differential forms (QDFs) � Φ k ,ℓ ∈ R w × w � k ,ℓ = 0 ,..., L symmetric, i.e. Φ k ,ℓ = Φ ⊤ Φ := ℓ, k Q Φ : C ∞ ( R , R w ) → C ∞ ( R , R ) Φ 0 , 0 Φ 0 , 1 . . . Φ 1 , 0 Φ 1 , 1 . . . w . . � � dw . . ⊤ Q Φ ( w ) := dw w ⊤ . . · · · . . . dt dt . Φ k , 0 Φ k , 1 . . . . . . . . . · · · . . � � ⊤ � � = � L d k d ℓ dt k w Φ k ,ℓ dt ℓ w k ,ℓ = 0
Example: total energy in mechanical system �� d � d � 2 � � 2 1 dt w 1 + dt w 2 2 + 1 � � k 1 w 2 1 + k 2 w 2 2 2 1 2 k 1 0 0 0 w 1 1 w 2 0 2 k 2 0 0 � � d d w 1 w 2 dt w 1 dt w 2 d 1 dt w 1 0 0 0 2 d 1 dt w 2 0 0 0 2
Outline Motivation and aim Definition Two-variable polynomial matrices The calculus of B/QDFs
Two-variable polynomial matrices for BDFs � Φ k ,ℓ ∈ R w 1 × w 2 � k ,ℓ = 0 ,..., L L ( d k d ℓ � dt k w 1 ) ⊤ Φ k ,ℓ L Φ ( w 1 , w 2 ) = dt ℓ w 2 k ,ℓ = 0 Φ( ζ, η ) = � L k ,ℓ = 0 Φ k ,ℓ ζ k η ℓ
Two-variable polynomial matrices for BDFs � Φ k ,ℓ ∈ R w 1 × w 2 � k ,ℓ = 0 ,..., L L ( d k d ℓ � dt k w 1 ) ⊤ Φ k ,ℓ L Φ ( w 1 , w 2 ) = dt ℓ w 2 k ,ℓ = 0 Φ( ζ, η ) = � L k ,ℓ = 0 Φ k ,ℓ ζ k η ℓ
Two-variable polynomial matrices for BDFs � Φ k ,ℓ ∈ R w 1 × w 2 � k ,ℓ = 0 ,..., L L ( d k d ℓ � dt k w 1 ) ⊤ Φ k ,ℓ L Φ ( w 1 , w 2 ) = dt ℓ w 2 k ,ℓ = 0 Φ( ζ, η ) = � L k ,ℓ = 0 Φ k ,ℓ ζ k η ℓ 2-variable polynomial matrix associated with L Φ
Two-variable polynomial matrices for QDFs � Φ k ,ℓ ∈ R w × w � k ,ℓ = 0 ,..., L symmetric (Φ k ,ℓ = Φ ⊤ ℓ, k ) L ( d k d ℓ � dt k w ) ⊤ Φ k ,ℓ Q Φ ( w ) = dt ℓ w k ,ℓ = 0 Φ( ζ, η ) = � L k ,ℓ = 0 Φ k ,ℓ ζ k η ℓ symmetric : Φ( ζ, η ) = Φ( η, ζ ) ⊤
Example: total energy in mechanical system 1 2 k 1 0 0 0 w 1 1 w 2 0 2 k 2 0 0 � � d d Q E ( w 1 , w 2 ) = w 1 w 2 dt w 1 dt w 2 d 1 dt w 1 0 0 0 2 d 1 dt w 2 0 0 0 2 � 1 � � 1 � 2 k 1 0 2 ζη 0 E ( ζ, η ) = + 1 1 0 2 k 2 0 2 ζη
Historical intermezzo
Historical intermezzo stability tests (‘60s)
Historical intermezzo path integrals (‘60s) stability tests (‘60s)
Historical intermezzo Lyapunov functionals (‘80s) path integrals (‘60s) stability tests (‘60s)
Historical intermezzo Lyapunov functionals (‘80s) path integrals (‘60s) stability tests (‘60s) QDFs (1998)
Outline Motivation and aim Definition Two-variable polynomial matrices The calculus of B/QDFs
The calculus of B/QDFs Using powers of ζ and η as placeholders, B/QDF � two-variable polynomial matrix
The calculus of B/QDFs Using powers of ζ and η as placeholders, B/QDF � two-variable polynomial matrix Operations algebraic and properties operations/properties � of B/QDF on two-variable matrix
Differentiation • Φ ∈ R w × w [ ζ, η ] . Φ derivative of Q Φ : s Φ : C ∞ ( R , R w ) → C ∞ ( R , R ) Q • Φ ( w ) := d Q • dt ( Q Φ ( w )) • Φ( ζ, η ) = ( ζ + η )Φ( ζ, η ) Two-variable version of Leibniz’s rule
Integration D ( R , R • ) C ∞ -compact-support trajectories L Φ : D ( R , R w 1 ) × D ( R , R w 2 ) → D ( R , R ) � L Φ : D ( R , R w 1 ) × D ( R , R w 2 ) → R � + ∞ � L Φ ( w 1 , w 2 ) := −∞ L Φ ( w 1 , w 2 ) dt Analogous for QDFs
Part II: Applications
Outline Lyapunov theory Dissipativity theory Balancing and model reduction
Nonnegativity and positivity along a behavior B Q Φ ≥ 0 if Q Φ ( w ) ≥ 0 ∀ w ∈ B
Nonnegativity and positivity along a behavior B Q Φ ≥ 0 if Q Φ ( w ) ≥ 0 ∀ w ∈ B B B Q Φ > 0 if Q Φ ≥ 0, and [ Q Φ ( w ) = 0 ] = ⇒ [ w = 0 ]
Nonnegativity and positivity along a behavior B Q Φ ≥ 0 if Q Φ ( w ) ≥ 0 ∀ w ∈ B B B Q Φ > 0 if Q Φ ≥ 0, and [ Q Φ ( w ) = 0 ] = ⇒ [ w = 0 ] B Prop.: Let B = ker R ( d ≥ 0 iff there exist dt ) . Then Q Φ D ∈ R •× w [ ξ ] , X ∈ R •× w [ ζ, η ] such that Φ( ζ, η ) = D ( ζ ) ⊤ D ( η ) + R ( ζ ) ⊤ X ( ζ, η ) + X ( η, ζ ) ⊤ R ( η ) � �� � � �� � ≥ 0 for all w = 0 if evaluated on B
Lyapunov theory B autonomous is asymptotically stable iflim t →∞ w ( t ) = 0 ∀ w ∈ B B = ker R ( d dt ) stable ⇐ ⇒ det ( R ) Hurwitz
Lyapunov theory B autonomous is asymptotically stable iflim t →∞ w ( t ) = 0 ∀ w ∈ B B = ker R ( d dt ) stable ⇐ ⇒ det ( R ) Hurwitz Theorem: B asymptotically stable iff B B exists Q Φ such that Q Φ ≥ 0 and Q • < 0 Φ
Example � � d 2 r ( ξ ) = ξ 2 + 3 ξ + 2 dt 2 + 3 d B = ker dt + 2
Example � � d 2 r ( ξ ) = ξ 2 + 3 ξ + 2 dt 2 + 3 d B = ker dt + 2 B < 0, e.g. Ψ( ζ, η ) = − ζη ; Choose Ψ( ζ, η ) s.t. Q Ψ
Example � � d 2 r ( ξ ) = ξ 2 + 3 ξ + 2 dt 2 + 3 d B = ker dt + 2 B < 0, e.g. Ψ( ζ, η ) = − ζη ; Choose Ψ( ζ, η ) s.t. Q Ψ d Find Φ( ζ, η ) s.t. dt Q Φ ( w ) = Q Ψ ( w ) for all w ∈ B : ( ζ + η )Φ( ζ, η ) = Ψ( ζ, η ) + r ( ζ ) x ( η ) + x ( ζ ) r ( η ) � �� � = 0 on B
Example � � d 2 r ( ξ ) = ξ 2 + 3 ξ + 2 dt 2 + 3 d B = ker dt + 2 B < 0, e.g. Ψ( ζ, η ) = − ζη ; Choose Ψ( ζ, η ) s.t. Q Ψ d Find Φ( ζ, η ) s.t. dt Q Φ ( w ) = Q Ψ ( w ) for all w ∈ B : ( ζ + η )Φ( ζ, η ) = Ψ( ζ, η ) + r ( ζ ) x ( η ) + x ( ζ ) r ( η ) � �� � = 0 on B d dt Q Φ ( w ) = Q Ψ ( w ) for all w ∈ B
Example � � d 2 r ( ξ ) = ξ 2 + 3 ξ + 2 dt 2 + 3 d B = ker dt + 2 B < 0, e.g. Ψ( ζ, η ) = − ζη ; Choose Ψ( ζ, η ) s.t. Q Ψ d Find Φ( ζ, η ) s.t. dt Q Φ ( w ) = Q Ψ ( w ) for all w ∈ B : ( ζ + η )Φ( ζ, η ) = Ψ( ζ, η ) + r ( ζ ) x ( η ) + x ( ζ ) r ( η ) � �� � = 0 on B Equivalent to solving polynomial Lyapunov equation 0 = Ψ( − ξ, ξ ) + r ( − ξ ) x ( ξ ) + x ( − ξ ) r ( ξ ) ξ 2 ξ 2 − 3 ξ + 2 ξ 2 + 3 ξ + 2 ❀ x ( ξ ) = 1 6 ξ
Recommend
More recommend