the advantage of using mathematics in biology
play

The Advantage of Using Mathematics in Biology Peter Schuster - PowerPoint PPT Presentation

The Advantage of Using Mathematics in Biology Peter Schuster Institut fr Theoretische Chemie, Universitt Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Erwin Schrdinger-Institut Wien, 15.04.2008 Web-Page for further


  1. The Advantage of Using Mathematics in Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Erwin Schrödinger-Institut Wien, 15.04.2008

  2. Web-Page for further information: http://www.tbi.univie.ac.at/~pks

  3. 1. Fibonacci – Rabbits, plants, and the golden ratio 2. Mendel – Colors, genes, and inheritance 3. Fisher – Synthesis of genetics and Darwinian evolution 4. Turing – The origin of patterns 5. Hodgkin and Huxley – Neurons and PDEs 6. Error thresholds and antiviral strategies 7. Neutral networks – How evolution works

  4. 1. Fibonacci – Rabbits, plants, and the golden ratio 2. Mendel – Colors, genes, and inheritance 3. Fisher – Synthesis of genetics and Darwinian evolution 4. Turing – The origin of patterns 5. Hodgkin and Huxley – Neurons and PDEs 6. Error thresholds and antiviral strategies 7. Neutral networks – How evolution works

  5. Leonardo da Pisa „Fibonacci“ – Filius Bonacci ~1180 – ~1240 The Fibonacci numbers

  6. 1 2 3 4 5 6 generation 1 1 2 3 5 8 # pairs Bodo Werner, Universität Hamburg, 2006 The Fibonacci numbers

  7. Johannes Kepler (1571-1630) The Fibonacci numbers

  8. The Fibonacci spirals Space filling squares

  9. 1. Fibonacci – Rabbits, plants, and the golden ratio 2. Mendel – Colors, genes, and inheritance 3. Fisher – Synthesis of genetics and Darwinian evolution 4. Turing – The origin of patterns 5. Hodgkin and Huxley – Neurons and PDEs 6. Error thresholds and antiviral strategies 7. Neutral networks – How evolution works

  10. Gregor Mendel (1882-1884) Gregor Mendel‘s experiments on plant genetics Versuche über Pflanzen-Hybriden. Verhandlungen des naturforschenden Vereines in Brünn 4 : 3–47, 1866. Über einige aus künstlicher Befruchtung gewonnenen Hieracium-Bastarde. Verhandlungen des naturforschenden Vereines in Brünn 8 : 26–31, 1870.

  11. Gregor Mendel‘s experiments on plant genetics

  12. Gregor Mendel‘s experiments on plant genetics

  13. Molecular explanation of Mendel‘s expriments – recombination

  14. 1. Fibonacci – Rabbits, plants, and the golden ratio 2. Mendel – Colors, genes, and inheritance 3. Fisher – Synthesis of genetics and Darwinian evolution 4. Turing – The origin of patterns 5. Hodgkin and Huxley – Neurons and PDEs 6. Error thresholds and antiviral strategies 7. Neutral networks – How evolution works

  15. alleles: A 1 , A 2 , ..... , A n frequencies: x i = [A i ] ; genotype: A i ·A k Fitness values: a ik = f(A i ·A k ), a ik = a ki Ronald Fisher (1890-1962) Φ ( ) d { } = < > − < > = ≥ 2 2 a a a 2 2 var 0 dt Ronald Fisher‘s selection equation

  16. 1. Fibonacci – Rabbits, plants, and the golden ratio 2. Mendel – Colors, genes, and inheritance 3. Fisher – Synthesis of genetics and Darwinian evolution 4. Turing – The origin of patterns 5. Hodgkin and Huxley – Neurons and PDEs 6. Error thresholds and antiviral strategies 7. Neutral networks – How evolution works

  17. A. M. Turing. The chemical basis of morphogenesis. Phil.Trans.Roy.Soc. London B 327 :37, 1952 Alan Turing (1912-1954) Spontaneous pattern formation in reaction diffusion equations

  18. Boris Belousov and Anatol Zhabotinskii Boris Belousov Vincent Castets, Jacques Boissonade, Etiennette Dulos and Patrick DeKepper, Phys.Rev. Letters 64:2953, 1990 Experimental verification of Turing patterns in chemical reactions

  19. James D. Murray Hans Meinhardt Alfred Gierer Turing patterns on animal skins and shells

  20. 1. Fibonacci – Rabbits, plants, and the golden ratio 2. Mendel – Colors, genes, and inheritance 3. Fisher – Synthesis of genetics and Darwinian evolution 4. Turing – The origin of patterns 5. Hodgkin and Huxley – Neurons and PDEs 6. Error thresholds and antiviral strategies 7. Neutral networks – How evolution works

  21. A single neuron signaling to a muscle fiber

  22. Alan Hodgkin A. L. Hodgkin and A. F. Huxley. A Quantitative Description of Membrane Current and its Application to Conduction and Excitation in Nerve . Journal of Physiology 117 : 500-544, 1952 Andrew Huxley The Hodgkin-Huxley equation

  23. B A Christof Koch, Biophysics of Computation. Information Processing in single neurons. Oxford University Press, New York 1999.

  24. Christof Koch, Biophysics of Computation. Information Processing in single neurons. Oxford University Press, New York 1999.

  25. d V 1 = − − − − − − 3 4 I g m h V V g n V V g V V ( ) ( ) ( ) Na Na K K l l d t C M dm = α − − β m m Hogdkin-Huxley OD equations ( 1 ) m m dt dh = α − − β h h ( 1 ) h h dt dn = α − − β n n ( 1 ) n n dt A single neuron signaling to a muscle fiber

  26. ∂ ∂ 2 V V 1 = + − + − + − π 3 4 C g m h V V g n V V g V V r L ( ) ( ) ( ) 2 Na Na K K l l ∂ ∂ 2 R x t ∂ m = α − − β m m ( 1 ) Hodgkin-Huxley PDEquations m m ∂ t ∂ h = α − − β h h ( 1 ) Travelling pulse solution: V ( x,t ) = V ( � ) with h h ∂ t � = x + � t ∂ n = α − − β n n ( 1 ) n n ∂ t Hodgkin-Huxley equations describing pulse propagation along nerve fibers

  27. [ ] 2 d V d V 1 = θ + − + − + − π 3 4 C g m h V V g n V V g V V r L ( ) ( ) ( ) 2 M Na Na K K l l ξ ξ 2 R d d d m Hodgkin-Huxley PDEquations θ = α − − β m m ( 1 ) m m ξ d Travelling pulse solution: V ( x,t ) = V ( � ) with d h θ = α − − β h h ( 1 ) h h � = x + � t ξ d d n θ = α − − β n n ( 1 ) n n ξ d Hodgkin-Huxley equations describing pulse propagation along nerve fibers

  28. Temperature dependence of the Hodgkin-Huxley equations

  29. Systematic investigation of pulse behavior

  30. 6 T = 18.5 C; θ = 1873.33 cm / sec 5 � [cm] 4 3 2 1 100 50 0 -50 ] V m [ V

  31. T = 18.5 C; θ = 1873.3324514717698 cm / sec

  32. T = 18.5 C; θ = 1873.3324514717697 cm / sec

  33. 18 16 T = 18.5 C; θ = 544.070 cm / sec 14 � [cm] 12 10 8 6 40 30 20 10 0 -10 ] V m [ V

  34. Propagating wave solutions of the Hodgkin-Huxley equations

  35. 1. Fibonacci – Rabbits, plants, and the golden ratio 2. Mendel – Colors, genes, and inheritance 3. Fisher – Synthesis of genetics and Darwinian evolution 4. Turing – The origin of patterns 5. Hodgkin and Huxley – Neurons and PDEs 6. Error thresholds and antiviral strategies 7. Neutral networks – How evolution works

  36. Chemical kinetics of molecular evolution M. Eigen, P. Schuster, `The Hypercycle´, Springer-Verlag, Berlin 1979

  37. Stock solution : activated monomers, ATP, CTP, GTP, UTP (TTP); a replicase, an enzyme that performs complemantary replication; buffer solution r = � R -1 Flow rate : The population size N , the number of polynucleotide molecules, is controlled by the flow r ≈ ± N t N N ( ) The flowreactor is a device for studies of evolution in vitro and in silico .

  38. Chemical kinetics of replication and mutation as parallel reactions

  39. Manfred Eigen‘s replication-mutation equation

  40. Mutation-selection equation : [I i ] = x i � 0, f i > 0, Q ij � 0 dx ∑ ∑ ∑ n n n = − Φ = = Φ = = i Q f x x i n x f x f , 1 , 2 , , ; 1 ; L ij j j i i j j = = = dt j i j 1 1 1 Solutions are obtained after integrating factor transformation by means of an eigenvalue problem ( ) ( ) ∑ − n 1 ⋅ ⋅ λ c t l 0 exp ( ) ∑ n ik k k = = = = x t k i n c h x 0 ; 1 , 2 , , ; ( 0 ) ( 0 ) L ( ) ( ) ∑ ∑ i − k ki i n n 1 = i ⋅ ⋅ λ 1 c t 0 exp l jk k k = = j k 1 0 { } { } { } ÷ = = = − = = = 1 W f Q i j n L i j n L H h i j n ; , 1 , 2 , L , ; l ; , 1 , 2 , L , ; ; , 1 , 2 , L , i ij ij ij { } − ⋅ ⋅ = Λ = λ = − 1 L W L k n ; 0 , 1 , L , 1 k

  41. constant level sets of � Selection of quasispecies with f 1 = 1.9, f 2 = 2.0, f 3 = 2.1, and p = 0.01 parametric plot on S 3

  42. Formation of a quasispecies in sequence space

  43. Formation of a quasispecies in sequence space

  44. Formation of a quasispecies in sequence space

  45. Formation of a quasispecies in sequence space

  46. Uniform distribution in sequence space

  47. Quasispecies Uniform distribution 0.00 0.05 0.10 Error rate p = 1-q Quasispecies as a function of the replication accuracy q

  48. Chain length and error threshold ⋅ σ = − ⋅ σ ≥ ⇒ ⋅ − ≥ − σ n Q p n p ( 1 ) 1 ln ( 1 ) ln σ ln ≈ n p constant : K max n σ ln ≈ p n constant : K max p = − n Q p ( 1 ) K replicatio n accuracy p error rate K n chain length K f = σ m superiorit y of master sequence K ∑ ≠ − x f ( 1 ) m j j m

Recommend


More recommend