the 7 year wmap observations cosmological interpretation
play

The 7 -Year WMAP Observations: Cosmological Interpretation Eiichiro - PowerPoint PPT Presentation

The 7 -Year WMAP Observations: Cosmological Interpretation Eiichiro Komatsu (Texas Cosmology Center, UT Austin) Physics Colloquium, UT Dallas, November 10, 2010 1 Cosmology: The Questions How much do we understand our Universe? How old


  1. The 7 -Year WMAP Observations: Cosmological Interpretation Eiichiro Komatsu (Texas Cosmology Center, UT Austin) Physics Colloquium, UT Dallas, November 10, 2010 1

  2. Cosmology: The Questions • How much do we understand our Universe? • How old is it? • How big is it? • What shape does it take? • What is it made of? • How did it begin? 2

  3. The Breakthrough • Now we can observe the physical condition of the Universe when it was very young. 3

  4. Cosmic Microwave Background (CMB) • Fossil light of the Big Bang! 4

  5. From “Cosmic Voyage”

  6. Night Sky in Optical (~0.5µm) 6

  7. Night Sky in Microwave (~1mm) 7

  8. Night Sky in Microwave (~1mm) T today =2.725K COBE Satellite, 1989-1993 8

  9. 4K Black-body 2.725K Black-body 2K Black-body Brightness, W/m 2 /sr/Hz Rocket (COBRA) Satellite (COBE/FIRAS) CN Rotational Transition Ground-based Balloon-borne Satellite (COBE/DMR) Spectrum of CMB (from Samtleben et al. 2007) 3m 30cm 3mm 0.3mm 9 Wavelength

  10. How was CMB created? • When the Universe was hot, it was a hot soup made of: • Protons, electrons, and helium nuclei • Photons and neutrinos • Dark matter 10

  11. Universe as a hot soup • Free electrons can scatter photons efficiently. • Photons cannot go very far. proton photon helium electron 11

  12. Recombination and Decoupling • [ recombination ] When the temperature 1500K falls below 3000 K, almost all electrons are captured by protons 3000K and helium nuclei. Time • [ decoupling ] Photons are no longer scattered. I.e., photons 6000K and electrons are no longer coupled. proton electron helium photon 12

  13. Smoot et al. (1992) COBE/DMR, 1992 • Isotropic? • CMB is anisotropic! (at the 1/100,000 level) 14

  14. CMB: The Farthest and Oldest Light That We Can Ever Hope To Observe Directly • When the Universe was 3000K (~380,000 years after the Big Bang), electrons and protons were combined to form neutral hydrogen. 15

  15. WMAP at Lagrange 2 (L2) Point June 2001: WMAP launched! February 2003: The first-year data release March 2006: The three-year data release March 2008: The five-year data release January 2010: • L2 is a million miles from Earth The seven-year • WMAP leaves Earth, Moon, and Sun data release 16 behind it to avoid radiation from them

  16. WMAP Spacecraft Spacecraft WMAP Radiative Cooling: No Cryogenic System upper omni antenna back to back line of sight Gregorian optics, 1.4 x 1.6 m primaries 60K passive thermal radiator focal plane assembly feed horns secondary reflectors 90K thermally isolated instrument cylinder 300K warm spacecraft with: medium gain antennae - instrument electronics - attitude control/propulsion 17 - command/data handling deployed solar array w/ web shielding - battery and power control

  17. COBE to WMAP (x35 better resolution) COBE COBE 1989 WMAP WMAP 18 2001

  18. WMAP 7-Year Science Team • M.R. Greason • K.M. Smith • C.L. Bennett • J. L.Weiland • M. Halpern • C. Barnes • G. Hinshaw • E.Wollack • R.S. Hill • R. Bean • N. Jarosik • J. Dunkley • A. Kogut • O. Dore • S.S. Meyer • B. Gold • M. Limon • H.V. Peiris • L. Page • E. Komatsu • N. Odegard • L. Verde • D.N. Spergel • D. Larson • G.S. Tucker • E.L. Wright • M.R. Nolta 19

  19. WMAP 7-Year Papers • Jarosik et al. , “ Sky Maps, Systematic Errors, and Basic Results ” arXiv:1001.4744 • Gold et al. , “ Galactic Foreground Emission ” arXiv:1001.4555 • Weiland et al. , “ Planets and Celestial Calibration Sources ” arXiv:1001.4731 • Bennett et al. , “ Are There CMB Anomalies? ” arXiv:1001.4758 • Larson et al. , “ Power Spectra and WMAP-Derived Parameters ” arXiv:1001.4635 • Komatsu et al ., “ Cosmological Interpretation ” arXiv:1001.4538 20

  20. Cosmology Update: 7-year • Standard Model • H&He = 4.58 % (±0.16%) • Dark Matter = 22.9 % (±1.5%) • Dark Energy = 72.5 % (±1.6%) • H 0 =70.2±1.4 km/s/Mpc • Age of the Universe = 13.76 billion “ScienceNews” article on years (±0.11 billion years) the WMAP 7-year results How did we obtain these numbers? 21

  21. Temperature Anisotropy (Unpolarized) 22GHz 33GHz 61GHz 94GHz 41GHz 22

  22. Galaxy-cleaned Map 23

  23. Analysis: 2-point Correlation θ •C( θ )=(1/4 π ) ∑ (2l+1) C l P l (cos θ ) • How are temperatures on two points on the sky, separated by θ , COBE are correlated? • “Power Spectrum,” C l – How much fluctuation power do we have at a given angular scale? – l~180 degrees / θ 24 WMAP

  24. COBE/DMR Power Spectrum Angle ~ 180 deg / l ~9 deg ~90 deg (quadrupole) 25 Angular Wavenumber, l

  25. COBE To WMAP θ •COBE is unable to resolve the structures below ~7 degrees COBE •WMAP’s resolving power is 35 times better than COBE. •What did WMAP see? θ 26 WMAP

  26. WMAP Power Spectrum Angular Power Spectrum Large Scale Small Scale COBE about 1 degree on the sky 27

  27. The Cosmic Sound Wave • “The Universe as a Miso soup” • Main Ingredients: protons, helium nuclei, electrons, photons • We measure the composition of the Universe by 28 analyzing the wave form of the cosmic sound waves.

  28. CMB to Baryon & Dark Matter Baryon Density ( Ω b ) Total Matter Density ( Ω m ) =Baryon+Dark Matter • 1-to-2: baryon-to-photon ratio • 1-to-3: matter-to-radiation ratio (z EQ : equality redshift) 29

  29. Determining Baryon Density From C l 30

  30. Determining Dark Matter Density From C l 0.09 0.49 31

  31. Detection of Primordial Helium (Temperature Fluctuation) 2 32 =180 deg/ θ

  32. Effect of helium on C lTT • We measure the baryon number density, n b , from the 1st- to-2nd peak ratio. • As helium recombined at z~1800, there were fewer electrons at the decoupling epoch (z=1090): n e =(1–Y p )n b . • More helium = Fewer electrons = Longer photon mean free path 1/( σ T n e ) = Enhanced damping • Y p = 0.33 ± 0.08 (68%CL) • Consistent with the standard value from the Big Bang nucleosynthesis theory: Y P =0.24. 33

  33. Another “3rd peak science”: Number of Relativistic Species N eff =4.3 ±0.9 from external data 34 from 3rd peak

  34. And, the mass of neutrinos • WMAP data combined with the local measurement of the expansion rate (H 0 ), we get ∑ m ν <0.6 eV (95%CL) 35

  35. CMB Polarization • CMB is (very weakly) polarized! 36

  36. Physics of CMB Polarization Wayne Hu • CMB Polarization is created by a local temperature quadrupole anisotropy. 37

  37. Principle North Hot Cold Cold Hot East • Polarization direction is parallel to “hot.” 38

  38. CMB Polarization on Large Angular Scales (>2 deg) Matter Density Potential Δ T/T = (Newton’s Gravitation Potential)/3 Δ T Polarization • How does the photon-baryon plasma move? 39

  39. CMB Polarization Tells Us How Plasma Moves at z=1090 Zaldarriaga & Harari (1995) Matter Density Potential Δ T/T = (Newton’s Gravitation Potential)/3 Δ T Polarization • Plasma falling into the gravitational potential well = Radial polarization pattern 40

  40. Quadrupole From Velocity Gradient (Large Scale) Sachs-Wolfe: Δ T/T= Φ /3 Δ T Stuff flowing in Potential Φ Acceleration a =– ∂Φ a >0 =0 Velocity Velocity gradient Velocity in the rest The left electron sees colder e – e – frame of electron photons along the plane wave Polarization Radial None 41

  41. Quadrupole From Velocity Gradient (Small Scale) Compression increases Δ T temperature Stuff flowing in Potential Φ Acceleration Pressure gradient slows a =– ∂Φ – ∂ P down the flow a >0 <0 Velocity Velocity gradient Velocity in the rest e – e – frame of electron Polarization Radial Tangential 42

  42. Stacking Analysis • Stack polarization images around temperature hot and cold spots. • Outside of the Galaxy mask (not shown), there are 12387 hot spots and 12628 cold spots . 43

  43. Two-dimensional View • All hot and cold spots are stacked (the threshold peak height, Δ T/ σ , is zero) • “Compression phase” at θ =1.2 deg and “slow-down phase” at θ =0.6 deg are predicted to be there and we observe them! • The overall significance level: 8 σ 44

  44. E-mode and B-mode • Gravitational potential can generate the E- mode polarization, but not B-modes. • Gravitational waves can generate both E- and B-modes! E mode B mode 45

  45. Polarization Power Spectrum • No detection of B-mode polarization yet. B-mode is the next holy grail! 46

  46. Theory of the Very Early Universe • The leading theoretical idea about the primordial Universe, called “ Cosmic Inflation ,” predicts: (Guth 1981; Linde 1982; Albrecht & Steinhardt 1982; Starobinsky 1980) • The expansion of our Universe accelerated in a tiny fraction of a second after its birth. • Just like Dark Energy accelerating today’s expansion: the acceleration also happened at very, very early times! • Inflation stretches “ micro to macro ” • In a tiny fraction of a second, the size of an atomic nucleus (~10 -15 m ) would be stretched to 1 A.U. (~10 11 m), at least. 47

  47. Cosmic Inflation = Very Early Dark Energy 48

Recommend


More recommend